Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import time
|
| 2 |
import os
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
import torch
|
|
@@ -19,7 +20,7 @@ if has_cuda:
|
|
| 19 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16", use_auth_token=READ_TOKEN)
|
| 20 |
device = "cuda"
|
| 21 |
else:
|
| 22 |
-
pipe = StableDiffusionPipeline.from_pretrained(model_id,
|
| 23 |
device = "cpu"
|
| 24 |
|
| 25 |
pipe.to(device)
|
|
@@ -33,6 +34,8 @@ tokenizer = AutoTokenizer.from_pretrained(SAVED_CHECKPOINT)
|
|
| 33 |
|
| 34 |
summarizer = pipeline("summarization")
|
| 35 |
|
|
|
|
|
|
|
| 36 |
def break_until_dot(txt):
|
| 37 |
return txt.rsplit('.', 1)[0] + '.'
|
| 38 |
|
|
@@ -42,7 +45,8 @@ def generate(prompt):
|
|
| 42 |
|
| 43 |
outputs = model.generate(
|
| 44 |
input_ids=input_ids,
|
| 45 |
-
max_length=
|
|
|
|
| 46 |
temperature=0.7,
|
| 47 |
num_return_sequences=3,
|
| 48 |
do_sample=True
|
|
@@ -57,22 +61,22 @@ def generate_story(prompt):
|
|
| 57 |
summary = break_until_dot(summary)
|
| 58 |
return story, summary, gr.update(visible=True)
|
| 59 |
|
| 60 |
-
def on_change_event(app_state
|
| 61 |
-
|
| 62 |
-
if app_state and app_state['running']:
|
| 63 |
img = app_state['img']
|
| 64 |
step = app_state['step']
|
| 65 |
label = f'Reconstructed image from the latent state at step {step}'
|
|
|
|
| 66 |
return gr.update(value=img, label=label)
|
| 67 |
else:
|
| 68 |
-
return
|
| 69 |
|
| 70 |
with gr.Blocks() as demo:
|
| 71 |
|
| 72 |
def generate_image(prompt, inference_steps, app_state):
|
| 73 |
app_state['running'] = True
|
| 74 |
def callback(step, ts, latents):
|
| 75 |
-
print (f'In Callback on {step}!')
|
| 76 |
latents = 1 / 0.18215 * latents
|
| 77 |
res = pipe.vae.decode(latents).sample
|
| 78 |
res = (res / 2 + 0.5).clamp(0, 1)
|
|
@@ -80,9 +84,10 @@ with gr.Blocks() as demo:
|
|
| 80 |
res = pipe.numpy_to_pil(res)[0]
|
| 81 |
app_state['img'] = res
|
| 82 |
app_state['step'] = step
|
|
|
|
| 83 |
|
| 84 |
prompt = prompt + ' masterpiece charcoal pencil art lord of the rings illustration'
|
| 85 |
-
img = pipe(prompt, height=512, width=512, num_inference_steps=inference_steps, callback=callback, callback_steps=
|
| 86 |
app_state['running'] = False
|
| 87 |
return gr.update(value=img.images[0], label='Generated image')
|
| 88 |
|
|
@@ -103,7 +108,7 @@ with gr.Blocks() as demo:
|
|
| 103 |
img_description = gr.Markdown('Image generation take some time'
|
| 104 |
' but here you can see the what is generated from the latent state of the diffuser every few steps.'
|
| 105 |
' Usually there is a significant improvement around step 15, that yields much better result')
|
| 106 |
-
image = gr.Image(label='Illustration for your story',
|
| 107 |
|
| 108 |
inference_steps = gr.Slider(5, 30,
|
| 109 |
value=15,
|
|
@@ -115,15 +120,12 @@ with gr.Blocks() as demo:
|
|
| 115 |
bt_make_text.click(fn=generate_story, inputs=prompt, outputs=[story, summary, bt_make_image])
|
| 116 |
bt_make_image.click(fn=generate_image, inputs=[summary, inference_steps, app_state], outputs=image)
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
# dep = demo.load(on_change_event, None, None, every=1)
|
| 122 |
-
# eventslider.change(fn=on_change_event, inputs=[app_state], outputs=[image], every=1, cancels=[dep])
|
| 123 |
-
inference_steps.change(fn=on_change_event, inputs=[app_state], outputs=[image], every=1)
|
| 124 |
|
| 125 |
|
| 126 |
if READ_TOKEN:
|
| 127 |
demo.queue().launch()
|
| 128 |
else:
|
| 129 |
-
demo.queue().launch(share=True, debug=True)
|
|
|
|
| 1 |
import time
|
| 2 |
import os
|
| 3 |
+
import PIL
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
import torch
|
|
|
|
| 20 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16", use_auth_token=READ_TOKEN)
|
| 21 |
device = "cuda"
|
| 22 |
else:
|
| 23 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=READ_TOKEN)
|
| 24 |
device = "cpu"
|
| 25 |
|
| 26 |
pipe.to(device)
|
|
|
|
| 34 |
|
| 35 |
summarizer = pipeline("summarization")
|
| 36 |
|
| 37 |
+
#######################################################
|
| 38 |
+
|
| 39 |
def break_until_dot(txt):
|
| 40 |
return txt.rsplit('.', 1)[0] + '.'
|
| 41 |
|
|
|
|
| 45 |
|
| 46 |
outputs = model.generate(
|
| 47 |
input_ids=input_ids,
|
| 48 |
+
max_length=120,
|
| 49 |
+
min_length=50,
|
| 50 |
temperature=0.7,
|
| 51 |
num_return_sequences=3,
|
| 52 |
do_sample=True
|
|
|
|
| 61 |
summary = break_until_dot(summary)
|
| 62 |
return story, summary, gr.update(visible=True)
|
| 63 |
|
| 64 |
+
def on_change_event(app_state):
|
| 65 |
+
if app_state and app_state['running'] and app_state['img']:
|
|
|
|
| 66 |
img = app_state['img']
|
| 67 |
step = app_state['step']
|
| 68 |
label = f'Reconstructed image from the latent state at step {step}'
|
| 69 |
+
print(f'Updating the image:! {app_state}')
|
| 70 |
return gr.update(value=img, label=label)
|
| 71 |
else:
|
| 72 |
+
return gr.update()
|
| 73 |
|
| 74 |
with gr.Blocks() as demo:
|
| 75 |
|
| 76 |
def generate_image(prompt, inference_steps, app_state):
|
| 77 |
app_state['running'] = True
|
| 78 |
def callback(step, ts, latents):
|
| 79 |
+
print (f'In Callback on {step} {ts} !')
|
| 80 |
latents = 1 / 0.18215 * latents
|
| 81 |
res = pipe.vae.decode(latents).sample
|
| 82 |
res = (res / 2 + 0.5).clamp(0, 1)
|
|
|
|
| 84 |
res = pipe.numpy_to_pil(res)[0]
|
| 85 |
app_state['img'] = res
|
| 86 |
app_state['step'] = step
|
| 87 |
+
print (f'In Callback on {app_state} Done!')
|
| 88 |
|
| 89 |
prompt = prompt + ' masterpiece charcoal pencil art lord of the rings illustration'
|
| 90 |
+
img = pipe(prompt, height=512, width=512, num_inference_steps=inference_steps, callback=callback, callback_steps=2)
|
| 91 |
app_state['running'] = False
|
| 92 |
return gr.update(value=img.images[0], label='Generated image')
|
| 93 |
|
|
|
|
| 108 |
img_description = gr.Markdown('Image generation take some time'
|
| 109 |
' but here you can see the what is generated from the latent state of the diffuser every few steps.'
|
| 110 |
' Usually there is a significant improvement around step 15, that yields much better result')
|
| 111 |
+
image = gr.Image(label='Illustration for your story', show_label=True)
|
| 112 |
|
| 113 |
inference_steps = gr.Slider(5, 30,
|
| 114 |
value=15,
|
|
|
|
| 120 |
bt_make_text.click(fn=generate_story, inputs=prompt, outputs=[story, summary, bt_make_image])
|
| 121 |
bt_make_image.click(fn=generate_image, inputs=[summary, inference_steps, app_state], outputs=image)
|
| 122 |
|
| 123 |
+
eventslider = gr.Slider(visible=False)
|
| 124 |
+
dep = demo.load(on_change_event, app_state, image, every=10)
|
| 125 |
+
eventslider.change(fn=on_change_event, inputs=[app_state], outputs=[image], every=10, cancels=[dep])
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
|
| 128 |
if READ_TOKEN:
|
| 129 |
demo.queue().launch()
|
| 130 |
else:
|
| 131 |
+
demo.queue().launch(share=True, debug=True)
|