Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import transformers
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
+
from transformers import pipeline
|
9 |
+
from diffusers import StableDiffusionPipeline
|
10 |
+
|
11 |
+
READ_TOKEN = os.environ.get('HF_ACCESS_TOKEN', None)
|
12 |
+
|
13 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
14 |
+
# model_id = "CompVis/stable-diffusion-v1-4"
|
15 |
+
|
16 |
+
has_cuda = torch.cuda.is_available()
|
17 |
+
|
18 |
+
if has_cuda:
|
19 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16", use_auth_token=READ_TOKEN)
|
20 |
+
device = "cuda"
|
21 |
+
else:
|
22 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", use_auth_token=READ_TOKEN)
|
23 |
+
device = "cpu"
|
24 |
+
|
25 |
+
pipe.to(device)
|
26 |
+
def safety_checker(images, clip_input):
|
27 |
+
return images, False
|
28 |
+
pipe.safety_checker = safety_checker
|
29 |
+
|
30 |
+
SAVED_CHECKPOINT = 'mikegarts/distilgpt2-lotr'
|
31 |
+
model = AutoModelForCausalLM.from_pretrained(SAVED_CHECKPOINT)
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(SAVED_CHECKPOINT)
|
33 |
+
|
34 |
+
summarizer = pipeline("summarization")
|
35 |
+
|
36 |
+
def break_until_dot(txt):
|
37 |
+
return txt.rsplit('.', 1)[0] + '.'
|
38 |
+
|
39 |
+
def generate(prompt):
|
40 |
+
input_context = prompt
|
41 |
+
input_ids = tokenizer.encode(input_context, return_tensors="pt").to(model.device)
|
42 |
+
|
43 |
+
outputs = model.generate(
|
44 |
+
input_ids=input_ids,
|
45 |
+
max_length=180,
|
46 |
+
temperature=0.7,
|
47 |
+
num_return_sequences=3,
|
48 |
+
do_sample=True
|
49 |
+
)
|
50 |
+
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
51 |
+
return break_until_dot(decoded)
|
52 |
+
|
53 |
+
|
54 |
+
def generate_story(prompt):
|
55 |
+
story = generate(prompt=prompt)
|
56 |
+
summary = summarizer(story, min_length=5, max_length=15)[0]['summary_text']
|
57 |
+
summary = break_until_dot(summary)
|
58 |
+
return story, summary, gr.update(visible=True)
|
59 |
+
|
60 |
+
def on_change_event(app_state=None):
|
61 |
+
print(f'In change event!')
|
62 |
+
if app_state and app_state['running']:
|
63 |
+
img = app_state['img']
|
64 |
+
step = app_state['step']
|
65 |
+
label = f'Reconstructed image from the latent state at step {step}'
|
66 |
+
return gr.update(value=img, label=label)
|
67 |
+
else:
|
68 |
+
return None
|
69 |
+
|
70 |
+
with gr.Blocks() as demo:
|
71 |
+
|
72 |
+
def generate_image(prompt, inference_steps, app_state):
|
73 |
+
app_state['running'] = True
|
74 |
+
def callback(step, ts, latents):
|
75 |
+
print (f'In Callback on {step}!')
|
76 |
+
latents = 1 / 0.18215 * latents
|
77 |
+
res = pipe.vae.decode(latents).sample
|
78 |
+
res = (res / 2 + 0.5).clamp(0, 1)
|
79 |
+
res = res.cpu().permute(0, 2, 3, 1).detach().numpy()
|
80 |
+
res = pipe.numpy_to_pil(res)[0]
|
81 |
+
app_state['img'] = res
|
82 |
+
app_state['step'] = step
|
83 |
+
|
84 |
+
prompt = prompt + ' masterpiece charcoal pencil art lord of the rings illustration'
|
85 |
+
img = pipe(prompt, height=512, width=512, num_inference_steps=inference_steps, callback=callback, callback_steps=5)
|
86 |
+
app_state['running'] = False
|
87 |
+
return gr.update(value=img.images[0], label='Generated image')
|
88 |
+
|
89 |
+
app_state = gr.State({'img': None,
|
90 |
+
'step':0,
|
91 |
+
'running':False})
|
92 |
+
title = gr.Markdown('## Lord of the rings app')
|
93 |
+
description = gr.Markdown(f'#### A Lord of the rings inspired app that combines text and image generation.'
|
94 |
+
f' The language modeling is done by fine tuning distilgpt2 on the LOTR trilogy.'
|
95 |
+
f' The text2img model is {model_id}. The summarization is done using distilbart.')
|
96 |
+
prompt = gr.Textbox(label="Your prompt", value="Frodo took the sword and")
|
97 |
+
story = gr.Textbox(label="Your story")
|
98 |
+
summary = gr.Textbox(label="Summary")
|
99 |
+
|
100 |
+
bt_make_text = gr.Button("Generate text")
|
101 |
+
bt_make_image = gr.Button(f"Generate an image (takes about 10-15 minutes on CPU).", visible=False)
|
102 |
+
|
103 |
+
img_description = gr.Markdown('Image generation take some time'
|
104 |
+
' but here you can see the what is generated from the latent state of the diffuser every few steps.'
|
105 |
+
' Usually there is a significant improvement around step 15, that yields much better result')
|
106 |
+
image = gr.Image(label='Illustration for your story', shape=(512, 512), show_label=True)
|
107 |
+
|
108 |
+
inference_steps = gr.Slider(5, 30,
|
109 |
+
value=15,
|
110 |
+
step=1,
|
111 |
+
visible=True,
|
112 |
+
label=f"Num inference steps (more steps makes a better image but takes more time)")
|
113 |
+
|
114 |
+
|
115 |
+
bt_make_text.click(fn=generate_story, inputs=prompt, outputs=[story, summary, bt_make_image])
|
116 |
+
bt_make_image.click(fn=generate_image, inputs=[summary, inference_steps, app_state], outputs=image)
|
117 |
+
|
118 |
+
# bt_boo = gr.Button("Click me")
|
119 |
+
# bt_boo.click(fn=on_change_event, inputs=app_state, outputs=image, every=1)
|
120 |
+
# eventslider = gr.Slider(label='Boooo!')
|
121 |
+
# dep = demo.load(on_change_event, None, None, every=1)
|
122 |
+
# eventslider.change(fn=on_change_event, inputs=[app_state], outputs=[image], every=1, cancels=[dep])
|
123 |
+
inference_steps.change(fn=on_change_event, inputs=[app_state], outputs=[image], every=1)
|
124 |
+
|
125 |
+
|
126 |
+
if READ_TOKEN:
|
127 |
+
demo.queue().launch()
|
128 |
+
else:
|
129 |
+
demo.queue().launch(share=True, debug=True)
|