|
import glob |
|
import json |
|
import os |
|
from dataclasses import dataclass |
|
from functools import lru_cache |
|
|
|
import numpy as np |
|
|
|
from app.display.formatting import make_clickable_model |
|
from app.display.utils import AutoEvalColumn, ModelType, Precision, Tasks |
|
from app.submission.check_validity import is_model_on_hub |
|
|
|
|
|
|
|
@lru_cache(maxsize=256) |
|
def cached_is_model_on_hub(full_model, revision): |
|
"""Cached version of is_model_on_hub to avoid repeated network calls""" |
|
return is_model_on_hub(full_model, revision, trust_remote_code=True, test_tokenizer=False) |
|
|
|
|
|
@dataclass |
|
class EvalResult: |
|
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.""" |
|
|
|
eval_name: str |
|
full_model: str |
|
org: str |
|
model: str |
|
revision: str |
|
results: dict |
|
precision: Precision = Precision.Unknown |
|
model_type: ModelType = ModelType.Unknown |
|
architecture: str = "Unknown" |
|
license: str = "?" |
|
likes: int = 0 |
|
num_params: int = 0 |
|
date: str = "" |
|
still_on_hub: bool = False |
|
reasoning: bool = False |
|
note: str = "" |
|
|
|
@classmethod |
|
def init_from_new_format_json_file(self, json_filepath): |
|
"""Inits the result from the new format model result file""" |
|
with open(json_filepath) as fp: |
|
data = json.load(fp) |
|
|
|
results = data.get("results") |
|
|
|
full_model = data.get("config_general", {}).get("model_name", "").strip() |
|
result_key = full_model.replace("/", "_") |
|
|
|
org, model = full_model.split("/", 1) if "/" in full_model else ("", full_model) |
|
|
|
still_on_hub, _, model_config = cached_is_model_on_hub(full_model, "main") |
|
|
|
architecture = "?" |
|
if model_config is not None: |
|
architectures = getattr(model_config, "architectures", None) |
|
if architectures: |
|
architecture = ";".join(architectures) |
|
|
|
|
|
score_results = {} |
|
for task in Tasks: |
|
task = task.value |
|
benchmark_id = task.benchmark |
|
metric = task.metric |
|
|
|
scores = [ |
|
results[key][metric] |
|
for key in results |
|
if "|" in key and benchmark_id.startswith(key.split("|")[1].removeprefix("icelandic_evals:")) |
|
] |
|
if len(scores) == 0: |
|
continue |
|
|
|
mean_acc = np.mean(scores) * 100.0 |
|
score_results[benchmark_id] = mean_acc |
|
|
|
return self( |
|
eval_name=result_key, |
|
full_model=full_model, |
|
org=org, |
|
model=model, |
|
results=score_results, |
|
revision="", |
|
still_on_hub=still_on_hub, |
|
architecture=architecture, |
|
) |
|
|
|
def update_with_request_file(self, requests_path): |
|
"""Finds the relevant request file for the current model and updates info with it""" |
|
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name) |
|
|
|
try: |
|
with open(request_file, "r") as f: |
|
request = json.load(f) |
|
self.model_type = ModelType.from_str(request.get("model_type", "")) |
|
self.license = request.get("license", "?") |
|
self.likes = request.get("likes", 0) |
|
self.num_params = request.get("params", 0) |
|
self.date = request.get("submitted_time", "") |
|
self.reasoning = request.get("reasoning", False) or request.get("gen_kwargs", {}).get( |
|
"reasoning_effort", None |
|
) |
|
self.note = request.get("note", "") |
|
except FileNotFoundError: |
|
print( |
|
f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}" |
|
) |
|
|
|
def to_dict(self): |
|
"""Converts the Eval Result to a dict compatible with our dataframe display""" |
|
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks) |
|
data_dict = { |
|
"eval_name": self.eval_name, |
|
AutoEvalColumn.precision.name: self.precision.value.name, |
|
AutoEvalColumn.model_type.name: self.model_type.value.name, |
|
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol, |
|
AutoEvalColumn.architecture.name: self.architecture, |
|
AutoEvalColumn.model.name: make_clickable_model(self.full_model), |
|
AutoEvalColumn.revision.name: self.revision, |
|
AutoEvalColumn.average.name: average, |
|
AutoEvalColumn.license.name: self.license, |
|
AutoEvalColumn.likes.name: self.likes, |
|
AutoEvalColumn.params.name: self.num_params, |
|
AutoEvalColumn.still_on_hub.name: self.still_on_hub, |
|
AutoEvalColumn.reasoning.name: self.reasoning, |
|
AutoEvalColumn.note.name: self.note, |
|
} |
|
|
|
for task in Tasks: |
|
if task.value.benchmark in self.results.keys(): |
|
data_dict[task.value.col_name] = self.results[task.value.benchmark] |
|
else: |
|
data_dict[task.value.col_name] = None |
|
|
|
return data_dict |
|
|
|
|
|
def get_request_file_for_model(requests_path, model_name, precision): |
|
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED""" |
|
request_files = os.path.join( |
|
requests_path, |
|
f"{model_name}_eval_request_*.json", |
|
) |
|
request_files = glob.glob(request_files) |
|
if len(request_files) == 1: |
|
return request_files[0] |
|
|
|
|
|
request_file = "" |
|
request_files = sorted(request_files, reverse=True) |
|
for tmp_request_file in request_files: |
|
with open(tmp_request_file, "r") as f: |
|
req_content = json.load(f) |
|
if req_content["precision"] == precision.split(".")[-1] or req_content["precision"] is None: |
|
request_file = tmp_request_file |
|
return request_file |
|
|
|
|
|
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]: |
|
"""From the path of the results folder root, extract all needed info for results""" |
|
model_result_filepaths = [] |
|
|
|
|
|
for root, _, files in os.walk(results_path): |
|
|
|
json_files = [f for f in files if f.endswith(".json")] |
|
if len(json_files) == 0: |
|
continue |
|
|
|
|
|
try: |
|
json_files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) |
|
except (ValueError, IndexError): |
|
|
|
json_files = [json_files[-1]] if json_files else [] |
|
|
|
for file in json_files: |
|
model_result_filepaths.append(os.path.join(root, file)) |
|
|
|
eval_results = {} |
|
for model_result_filepath in model_result_filepaths: |
|
try: |
|
|
|
eval_result = EvalResult.init_from_new_format_json_file(model_result_filepath) |
|
eval_result.update_with_request_file(requests_path) |
|
|
|
|
|
eval_name = eval_result.eval_name |
|
if eval_name in eval_results: |
|
|
|
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) |
|
else: |
|
eval_results[eval_name] = eval_result |
|
except Exception as e: |
|
|
|
print(f"Error processing {model_result_filepath}: {e}") |
|
continue |
|
|
|
results = [] |
|
for v in eval_results.values(): |
|
try: |
|
v.to_dict() |
|
results.append(v) |
|
except KeyError: |
|
continue |
|
|
|
return results |
|
|