File size: 8,372 Bytes
1d31670
 
 
 
9674655
1d31670
 
 
d4577f4
9674655
d4577f4
1d31670
 
9674655
 
 
 
 
 
 
1d31670
 
9674655
 
 
 
 
1d31670
9674655
1d31670
 
9674655
 
1d31670
 
 
9674655
1d31670
9674655
 
1d31670
 
9674655
 
1d31670
 
 
9674655
1d31670
9674655
 
1d31670
9674655
1d31670
9674655
1d31670
 
 
 
 
 
 
9674655
 
1d31670
 
9674655
 
 
 
 
 
 
 
 
1d31670
 
9674655
 
1d31670
 
 
 
 
 
9674655
 
1d31670
9674655
1d31670
 
 
 
 
 
 
 
 
 
 
 
 
 
9674655
 
 
bcaca18
1d31670
9674655
 
 
1d31670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcaca18
 
1d31670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9674655
 
1d31670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9674655
1d31670
 
9674655
 
1d31670
 
9674655
1d31670
9674655
 
 
 
1d31670
9674655
1d31670
 
 
 
9674655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d31670
 
 
 
9674655
1d31670
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import glob
import json
import os
from dataclasses import dataclass
from functools import lru_cache

import numpy as np

from app.display.formatting import make_clickable_model
from app.display.utils import AutoEvalColumn, ModelType, Precision, Tasks
from app.submission.check_validity import is_model_on_hub


# Add caching for hub checks to avoid repeated network calls
@lru_cache(maxsize=256)
def cached_is_model_on_hub(full_model, revision):
    """Cached version of is_model_on_hub to avoid repeated network calls"""
    return is_model_on_hub(full_model, revision, trust_remote_code=True, test_tokenizer=False)


@dataclass
class EvalResult:
    """Represents one full evaluation. Built from a combination of the result and request file for a given run."""

    eval_name: str  # org_model_precision (uid)
    full_model: str  # org/model (path on hub)
    org: str
    model: str
    revision: str  # commit hash, "" if main
    results: dict
    precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.Unknown  # Pretrained, fine tuned, ...
    architecture: str = "Unknown"
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = ""  # submission date of request file
    still_on_hub: bool = False
    reasoning: bool = False  # Whether reasoning is enabled for this model
    note: str = ""  # Extra information about the model (e.g., thinking budget, warnings)

    @classmethod
    def init_from_new_format_json_file(self, json_filepath):
        """Inits the result from the new format model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        results = data.get("results")

        full_model = data.get("config_general", {}).get("model_name", "").strip()
        result_key = full_model.replace("/", "_")

        org, model = full_model.split("/", 1) if "/" in full_model else ("", full_model)

        still_on_hub, _, model_config = cached_is_model_on_hub(full_model, "main")

        architecture = "?"
        if model_config is not None:
            architectures = getattr(model_config, "architectures", None)
            if architectures:
                architecture = ";".join(architectures)

        # Extract results available in this file
        score_results = {}
        for task in Tasks:
            task = task.value
            benchmark_id = task.benchmark
            metric = task.metric

            scores = [
                results[key][metric]
                for key in results
                if "|" in key and benchmark_id.startswith(key.split("|")[1].removeprefix("icelandic_evals:"))
            ]
            if len(scores) == 0:
                continue

            mean_acc = np.mean(scores) * 100.0
            score_results[benchmark_id] = mean_acc

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=score_results,
            revision="",
            still_on_hub=still_on_hub,
            architecture=architecture,
        )

    def update_with_request_file(self, requests_path):
        """Finds the relevant request file for the current model and updates info with it"""
        request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)

        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            self.model_type = ModelType.from_str(request.get("model_type", ""))
            self.license = request.get("license", "?")
            self.likes = request.get("likes", 0)
            self.num_params = request.get("params", 0)
            self.date = request.get("submitted_time", "")
            self.reasoning = request.get("reasoning", False) or request.get("gen_kwargs", {}).get(
                "reasoning_effort", None
            )
            self.note = request.get("note", "")  # Default to empty string if missing
        except FileNotFoundError:
            print(
                f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}"
            )

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.precision.name: self.precision.value.name,
            AutoEvalColumn.model_type.name: self.model_type.value.name,
            AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
            AutoEvalColumn.architecture.name: self.architecture,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.revision.name: self.revision,
            AutoEvalColumn.average.name: average,
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.likes.name: self.likes,
            AutoEvalColumn.params.name: self.num_params,
            AutoEvalColumn.still_on_hub.name: self.still_on_hub,
            AutoEvalColumn.reasoning.name: self.reasoning,
            AutoEvalColumn.note.name: self.note,
        }

        for task in Tasks:
            if task.value.benchmark in self.results.keys():
                data_dict[task.value.col_name] = self.results[task.value.benchmark]
            else:
                data_dict[task.value.col_name] = None

        return data_dict


def get_request_file_for_model(requests_path, model_name, precision):
    """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
    request_files = os.path.join(
        requests_path,
        f"{model_name}_eval_request_*.json",
    )
    request_files = glob.glob(request_files)
    if len(request_files) == 1:
        return request_files[0]

    # Select correct request file (precision)
    request_file = ""
    request_files = sorted(request_files, reverse=True)
    for tmp_request_file in request_files:
        with open(tmp_request_file, "r") as f:
            req_content = json.load(f)
            if req_content["precision"] == precision.split(".")[-1] or req_content["precision"] is None:
                request_file = tmp_request_file
    return request_file


def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    # Collect all JSON files first
    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        json_files = [f for f in files if f.endswith(".json")]
        if len(json_files) == 0:
            continue

        # Sort JSON files by date (newer later)
        try:
            json_files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
        except (ValueError, IndexError):
            # If sorting fails, just use the files as-is or take the last one
            json_files = [json_files[-1]] if json_files else []

        for file in json_files:
            model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        try:
            # Creation of result
            eval_result = EvalResult.init_from_new_format_json_file(model_result_filepath)
            eval_result.update_with_request_file(requests_path)

            # Store results of same eval together
            eval_name = eval_result.eval_name
            if eval_name in eval_results:
                # Update with newer scores
                eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
            else:
                eval_results[eval_name] = eval_result
        except Exception as e:
            # Log error but continue processing other files
            print(f"Error processing {model_result_filepath}: {e}")
            continue

    results = []
    for v in eval_results.values():
        try:
            v.to_dict()  # we test if the dict version is complete
            results.append(v)
        except KeyError:  # not all eval values present
            continue

    return results