michailroussos
more
1f11a55
raw
history blame
4.75 kB
import gradio as gr
from unsloth import FastLanguageModel
import torch
# Load the model and tokenizer locally
max_seq_length = 2048
model_name_or_path = "michailroussos/model_llama_8d"
# Load model and tokenizer using unsloth
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name_or_path,
max_seq_length=max_seq_length,
load_in_4bit=True,
)
FastLanguageModel.for_inference(model) # Enable optimized inference
# Define the response function
def respond(message, history, system_message, max_tokens, temperature, top_p):
print("\n" + "="*50)
print("===== RESPOND FUNCTION CALLED =====")
print("="*50)
# Print input parameters
print(f"Input Message: {message}")
print(f"System Message: {system_message}")
print(f"Max Tokens: {max_tokens}")
print(f"Temperature: {temperature}")
print(f"Top-p: {top_p}")
# Debug history
print("\n--- Current History ---")
print(f"History Type: {type(history)}")
print(f"History Content: {history}")
# Prepare the messages for the model
messages = []
try:
if history:
print("\n--- Processing Existing History ---")
for entry in history:
messages.append({"role": "user", "content": entry[0]})
messages.append({"role": "assistant", "content": entry[1]})
# Add the current user message
print("\n--- Adding Current Message ---")
messages.append({"role": "user", "content": message})
# Debug messages before tokenization
print("\n--- Messages Before Tokenization ---")
for msg in messages:
print(f"Role: {msg['role']}, Content: {msg['content']}")
# Tokenize the input
print("\n--- Tokenizing Input ---")
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
).to("cuda" if torch.cuda.is_available() else "cpu")
print(f"Tokenized Inputs Shape: {inputs.shape}")
print(f"Tokenized Inputs Device: {inputs.device}")
# Generate response
attention_mask = inputs.ne(tokenizer.pad_token_id).long()
try:
generated_tokens = model.generate(
input_ids=inputs,
attention_mask=attention_mask,
max_new_tokens=max_tokens,
use_cache=True,
temperature=temperature,
top_p=top_p,
)
# Decode the generated response
response = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
print("\n--- Generated Response ---")
print(f"Raw Response: {response}")
# Check and filter response
#if "system" in response.lower():
# print("WARNING: System message detected in response")
# response = "Hello! How can I assist you today?"
# Prepare return history in OpenAI messages format
return_messages = []
for entry in (history or []):
return_messages.append({"role": "user", "content": entry[0]})
return_messages.append({"role": "assistant", "content": entry[1]})
# Add current conversation turn
return_messages.append({"role": "user", "content": message})
return_messages.append({"role": "assistant", "content": response})
print("\n--- Return Messages ---")
for msg in return_messages:
print(f"Role: {msg['role']}, Content: {msg['content'][:100]}...")
return return_messages
except Exception as gen_error:
print("\n--- GENERATION ERROR ---")
print(f"Error during model generation: {gen_error}")
return []
except Exception as prep_error:
print("\n--- PREPARATION ERROR ---")
print(f"Error during message preparation: {prep_error}")
return []
# Define the Gradio interface
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="You are a helpful assistant.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
],
type="messages" # Explicitly set to messages type
)
if __name__ == "__main__":
demo.launch(share=False) # Use share=False for local testing