Spaces:
Runtime error
Runtime error
import gradio as gr | |
from unsloth import FastLanguageModel | |
import torch | |
# Load the model and tokenizer locally | |
max_seq_length = 2048 | |
model_name_or_path = "michailroussos/model_llama_8d" | |
# Load model and tokenizer using unsloth | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name=model_name_or_path, | |
max_seq_length=max_seq_length, | |
load_in_4bit=True, | |
) | |
FastLanguageModel.for_inference(model) # Enable optimized inference | |
# Define the response function | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
print("\n" + "="*50) | |
print("===== RESPOND FUNCTION CALLED =====") | |
print("="*50) | |
# Print input parameters | |
print(f"Input Message: {message}") | |
print(f"System Message: {system_message}") | |
print(f"Max Tokens: {max_tokens}") | |
print(f"Temperature: {temperature}") | |
print(f"Top-p: {top_p}") | |
# Debug history | |
print("\n--- Current History ---") | |
print(f"History Type: {type(history)}") | |
print(f"History Content: {history}") | |
# Prepare the messages for the model | |
messages = [] | |
try: | |
if history: | |
print("\n--- Processing Existing History ---") | |
for entry in history: | |
messages.append({"role": "user", "content": entry[0]}) | |
messages.append({"role": "assistant", "content": entry[1]}) | |
# Add the current user message | |
print("\n--- Adding Current Message ---") | |
messages.append({"role": "user", "content": message}) | |
# Debug messages before tokenization | |
print("\n--- Messages Before Tokenization ---") | |
for msg in messages: | |
print(f"Role: {msg['role']}, Content: {msg['content']}") | |
# Tokenize the input | |
print("\n--- Tokenizing Input ---") | |
inputs = tokenizer.apply_chat_template( | |
messages, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_tensors="pt", | |
).to("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Tokenized Inputs Shape: {inputs.shape}") | |
print(f"Tokenized Inputs Device: {inputs.device}") | |
# Generate response | |
attention_mask = inputs.ne(tokenizer.pad_token_id).long() | |
try: | |
generated_tokens = model.generate( | |
input_ids=inputs, | |
attention_mask=attention_mask, | |
max_new_tokens=max_tokens, | |
use_cache=True, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
# Decode the generated response | |
response = tokenizer.decode(generated_tokens[0], skip_special_tokens=True) | |
print("\n--- Generated Response ---") | |
print(f"Raw Response: {response}") | |
# Check and filter response | |
#if "system" in response.lower(): | |
# print("WARNING: System message detected in response") | |
# response = "Hello! How can I assist you today?" | |
# Prepare return history in OpenAI messages format | |
return_messages = [] | |
for entry in (history or []): | |
return_messages.append({"role": "user", "content": entry[0]}) | |
return_messages.append({"role": "assistant", "content": entry[1]}) | |
# Add current conversation turn | |
return_messages.append({"role": "user", "content": message}) | |
return_messages.append({"role": "assistant", "content": response}) | |
print("\n--- Return Messages ---") | |
for msg in return_messages: | |
print(f"Role: {msg['role']}, Content: {msg['content'][:100]}...") | |
return return_messages | |
except Exception as gen_error: | |
print("\n--- GENERATION ERROR ---") | |
print(f"Error during model generation: {gen_error}") | |
return [] | |
except Exception as prep_error: | |
print("\n--- PREPARATION ERROR ---") | |
print(f"Error during message preparation: {prep_error}") | |
return [] | |
# Define the Gradio interface | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a helpful assistant.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), | |
], | |
type="messages" # Explicitly set to messages type | |
) | |
if __name__ == "__main__": | |
demo.launch(share=False) # Use share=False for local testing |