import gradio as gr from unsloth import FastLanguageModel import torch # Load the model and tokenizer locally max_seq_length = 2048 model_name_or_path = "michailroussos/model_llama_8d" # Load model and tokenizer using unsloth model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_name_or_path, max_seq_length=max_seq_length, load_in_4bit=True, ) FastLanguageModel.for_inference(model) # Enable optimized inference # Define the response function def respond(message, history, system_message, max_tokens, temperature, top_p): print("\n" + "="*50) print("===== RESPOND FUNCTION CALLED =====") print("="*50) # Print input parameters print(f"Input Message: {message}") print(f"System Message: {system_message}") print(f"Max Tokens: {max_tokens}") print(f"Temperature: {temperature}") print(f"Top-p: {top_p}") # Debug history print("\n--- Current History ---") print(f"History Type: {type(history)}") print(f"History Content: {history}") # Prepare the messages for the model messages = [] try: if history: print("\n--- Processing Existing History ---") for entry in history: messages.append({"role": "user", "content": entry[0]}) messages.append({"role": "assistant", "content": entry[1]}) # Add the current user message print("\n--- Adding Current Message ---") messages.append({"role": "user", "content": message}) # Debug messages before tokenization print("\n--- Messages Before Tokenization ---") for msg in messages: print(f"Role: {msg['role']}, Content: {msg['content']}") # Tokenize the input print("\n--- Tokenizing Input ---") inputs = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", ).to("cuda" if torch.cuda.is_available() else "cpu") print(f"Tokenized Inputs Shape: {inputs.shape}") print(f"Tokenized Inputs Device: {inputs.device}") # Generate response attention_mask = inputs.ne(tokenizer.pad_token_id).long() try: generated_tokens = model.generate( input_ids=inputs, attention_mask=attention_mask, max_new_tokens=max_tokens, use_cache=True, temperature=temperature, top_p=top_p, ) # Decode the generated response response = tokenizer.decode(generated_tokens[0], skip_special_tokens=True) print("\n--- Generated Response ---") print(f"Raw Response: {response}") # Check and filter response #if "system" in response.lower(): # print("WARNING: System message detected in response") # response = "Hello! How can I assist you today?" # Prepare return history in OpenAI messages format return_messages = [] for entry in (history or []): return_messages.append({"role": "user", "content": entry[0]}) return_messages.append({"role": "assistant", "content": entry[1]}) # Add current conversation turn return_messages.append({"role": "user", "content": message}) return_messages.append({"role": "assistant", "content": response}) print("\n--- Return Messages ---") for msg in return_messages: print(f"Role: {msg['role']}, Content: {msg['content'][:100]}...") return return_messages except Exception as gen_error: print("\n--- GENERATION ERROR ---") print(f"Error during model generation: {gen_error}") return [] except Exception as prep_error: print("\n--- PREPARATION ERROR ---") print(f"Error during message preparation: {prep_error}") return [] # Define the Gradio interface demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), ], type="messages" # Explicitly set to messages type ) if __name__ == "__main__": demo.launch(share=False) # Use share=False for local testing