Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from unsloth import FastLanguageModel | |
| import torch | |
| # Load the model and tokenizer locally | |
| max_seq_length = 2048 | |
| model_name_or_path = "michailroussos/model_llama_8d" | |
| # Load model and tokenizer using unsloth | |
| model, tokenizer = FastLanguageModel.from_pretrained( | |
| model_name=model_name_or_path, | |
| max_seq_length=max_seq_length, | |
| load_in_4bit=True, | |
| ) | |
| FastLanguageModel.for_inference(model) # Enable optimized inference | |
| # Define the response function | |
| def respond(message, history, system_message, max_tokens, temperature, top_p): | |
| # Print to show the inputs at the start | |
| print(f"Received message: {message}") | |
| print(f"Current history: {history}") | |
| # Prepare the messages for the model: Exclude the system message for now | |
| messages = [] | |
| if history: | |
| for entry in history: | |
| print(f"Adding user message to history: {entry['user']}") | |
| print(f"Adding assistant message to history: {entry['assistant']}") | |
| messages.append({"role": "user", "content": entry["user"]}) | |
| messages.append({"role": "assistant", "content": entry["assistant"]}) | |
| # Add the user's new message to the list | |
| print(f"Adding current user message: {message}") | |
| messages.append({"role": "user", "content": message}) | |
| # Tokenize the input (prepare the data for the model) | |
| print("Preparing the input for the model...") | |
| inputs = tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=True, | |
| add_generation_prompt=True, | |
| return_tensors="pt", | |
| ).to("cuda" if torch.cuda.is_available() else "cpu") | |
| # Print the tokenized inputs | |
| print(f"Tokenized inputs: {inputs}") | |
| # Generate the response | |
| attention_mask = inputs.ne(tokenizer.pad_token_id).long() | |
| print(f"Attention mask: {attention_mask}") | |
| generated_tokens = model.generate( | |
| input_ids=inputs, | |
| attention_mask=attention_mask, | |
| max_new_tokens=max_tokens, | |
| use_cache=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ) | |
| # Decode the generated response | |
| response = tokenizer.decode(generated_tokens[0], skip_special_tokens=True) | |
| print(f"Generated response: {response}") | |
| # Update the conversation history with the new user-assistant pair | |
| if history is None: | |
| history = [] | |
| history.append({"user": message, "assistant": response}) | |
| # Prepare the history for Gradio: Formatting it correctly | |
| formatted_history = [] | |
| for entry in history: | |
| print(f"Formatting user message for history: {entry['user']}") | |
| print(f"Formatting assistant message for history: {entry['assistant']}") | |
| formatted_history.append({"role": "user", "content": entry["user"]}) | |
| formatted_history.append({"role": "assistant", "content": entry["assistant"]}) | |
| # Print the final formatted history before returning | |
| print(f"Formatted history for Gradio: {formatted_history}") | |
| # Return the formatted history for Gradio to display | |
| return formatted_history | |
| # Define the Gradio interface | |
| demo = gr.ChatInterface( | |
| fn=respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a helpful assistant.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), | |
| ], | |
| type="messages", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=False) # Use share=False for local testing | |