import gradio as gr from unsloth import FastLanguageModel import torch # Load the model and tokenizer locally max_seq_length = 2048 model_name_or_path = "michailroussos/model_llama_8d" # Load model and tokenizer using unsloth model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_name_or_path, max_seq_length=max_seq_length, load_in_4bit=True, ) FastLanguageModel.for_inference(model) # Enable optimized inference # Define the response function def respond(message, history, system_message, max_tokens, temperature, top_p): # Print to show the inputs at the start print(f"Received message: {message}") print(f"Current history: {history}") # Prepare the messages for the model: Exclude the system message for now messages = [] if history: for entry in history: print(f"Adding user message to history: {entry['user']}") print(f"Adding assistant message to history: {entry['assistant']}") messages.append({"role": "user", "content": entry["user"]}) messages.append({"role": "assistant", "content": entry["assistant"]}) # Add the user's new message to the list print(f"Adding current user message: {message}") messages.append({"role": "user", "content": message}) # Tokenize the input (prepare the data for the model) print("Preparing the input for the model...") inputs = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", ).to("cuda" if torch.cuda.is_available() else "cpu") # Print the tokenized inputs print(f"Tokenized inputs: {inputs}") # Generate the response attention_mask = inputs.ne(tokenizer.pad_token_id).long() print(f"Attention mask: {attention_mask}") generated_tokens = model.generate( input_ids=inputs, attention_mask=attention_mask, max_new_tokens=max_tokens, use_cache=True, temperature=temperature, top_p=top_p, ) # Decode the generated response response = tokenizer.decode(generated_tokens[0], skip_special_tokens=True) print(f"Generated response: {response}") # Update the conversation history with the new user-assistant pair if history is None: history = [] history.append({"user": message, "assistant": response}) # Prepare the history for Gradio: Formatting it correctly formatted_history = [] for entry in history: print(f"Formatting user message for history: {entry['user']}") print(f"Formatting assistant message for history: {entry['assistant']}") formatted_history.append({"role": "user", "content": entry["user"]}) formatted_history.append({"role": "assistant", "content": entry["assistant"]}) # Print the final formatted history before returning print(f"Formatted history for Gradio: {formatted_history}") # Return the formatted history for Gradio to display return formatted_history # Define the Gradio interface demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), ], type="messages", ) if __name__ == "__main__": demo.launch(share=False) # Use share=False for local testing