Spaces:
Sleeping
Sleeping
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool | |
import datetime | |
import requests | |
import pytz | |
import yaml | |
from tools.final_answer import FinalAnswerTool | |
from tools.visit_webpage import VisitWebpageTool | |
from Gradio_UI import GradioUI | |
import arxiv | |
from transformers import pipeline | |
# Initialize a summarization pipeline using a pre-trained model. | |
summarizer = pipeline("summarization") | |
def _search_arxiv(query: str, max_results: int = 5) -> list[dict[str, str | list[str]]]: | |
""" | |
Search for research articles on arXiv based on the given query. | |
Args: | |
query (str): The search query. | |
max_results (int): Maximum number of results to retrieve. | |
Returns: | |
list[dict[str, str | list[str]]]: Each dict contains title, authors, summary, publication date, and URL. | |
""" | |
search = arxiv.Search( | |
query=query, | |
max_results=max_results, | |
sort_by=arxiv.SortCriterion.SubmittedDate | |
) | |
results = [] | |
for result in search.results(): | |
results.append({ | |
'title': result.title, | |
'authors': [author.name for author in result.authors], | |
'summary': result.summary, | |
'published': result.published.strftime("%Y-%m-%d"), | |
'url': result.entry_id | |
}) | |
return results | |
def _summarize_text(text: str) -> str: | |
""" | |
Summarize the provided text using the Hugging Face summarization pipeline. | |
Args: | |
text (str): The text to summarize. | |
Returns: | |
str: The summarized text. | |
""" | |
# For longer texts, consider chunking before summarizing. | |
summary = summarizer(text, max_length=130, min_length=30, do_sample=False) | |
return summary[0]['summary_text'] | |
def personalized_research_assistant(query: str) -> str: | |
"""A tool that fetches relevant articles from arxiv and provides the information. | |
Args: | |
query: The research query to search for in arxiv. | |
""" | |
response = "" | |
articles = _search_arxiv(query) | |
for idx, article in enumerate(articles): | |
response += f"\nArticle {idx+1}:\n" | |
response += f"\nTitle: {article['title']}\n" | |
response += f"Authors: {', '.join(article['authors'])}\n" | |
response += f"Published on: {article['published']}\n" | |
response += f"URL: {article['url']}\n" | |
response += "Abstract Summary:\n" | |
response += f"{summarize_text(article['summary'])}\n" | |
response += "-" * 80 | |
return response | |
def get_current_time_in_timezone(timezone: str) -> str: | |
"""A tool that fetches the current local time in a specified timezone. | |
Args: | |
timezone: A string representing a valid timezone (e.g., 'America/New_York'). | |
""" | |
try: | |
# Create timezone object | |
tz = pytz.timezone(timezone) | |
# Get current time in that timezone | |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") | |
return f"The current local time in {timezone} is: {local_time}" | |
except Exception as e: | |
return f"Error fetching time for timezone '{timezone}': {str(e)}" | |
final_answer = FinalAnswerTool() | |
model = HfApiModel( | |
max_tokens=2096, | |
temperature=0.5, | |
model_id='https://wxknx1kg971u7k1n.us-east-1.aws.endpoints.huggingface.cloud',# it is possible that this model may be overloaded | |
custom_role_conversions=None, | |
) | |
# Import tool from Hub | |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
with open("prompts.yaml", 'r') as stream: | |
prompt_templates = yaml.safe_load(stream) | |
agent = CodeAgent( | |
model=model, | |
tools=[final_answer, image_generation_tool, DuckDuckGoSearchTool(), VisitWebpageTool(), get_current_time_in_timezone], ## add your tools here (don't remove final answer) | |
max_steps=6, | |
verbosity_level=1, | |
grammar=None, | |
planning_interval=None, | |
name=None, | |
description=None, | |
prompt_templates=prompt_templates | |
) | |
GradioUI(agent).launch() |