Spaces:
Sleeping
Sleeping
File size: 3,985 Bytes
9d980af 9b5b26a c19d193 3118bd6 8fe992b 9b5b26a 3118bd6 9b5b26a 3118bd6 9b5b26a 3118bd6 9b5b26a 3118bd6 9b5b26a 8c01ffb 6aae614 e121372 bf6d34c 9a8c112 fe328e0 13d500a 8c01ffb 9b5b26a 8c01ffb 861422e 9b5b26a 8c01ffb 8fe992b d638726 8c01ffb 861422e 8fe992b 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from tools.visit_webpage import VisitWebpageTool
from Gradio_UI import GradioUI
import arxiv
from transformers import pipeline
# Initialize a summarization pipeline using a pre-trained model.
summarizer = pipeline("summarization")
def _search_arxiv(query: str, max_results: int = 5) -> list[dict[str, str | list[str]]]:
"""
Search for research articles on arXiv based on the given query.
Args:
query (str): The search query.
max_results (int): Maximum number of results to retrieve.
Returns:
list[dict[str, str | list[str]]]: Each dict contains title, authors, summary, publication date, and URL.
"""
search = arxiv.Search(
query=query,
max_results=max_results,
sort_by=arxiv.SortCriterion.SubmittedDate
)
results = []
for result in search.results():
results.append({
'title': result.title,
'authors': [author.name for author in result.authors],
'summary': result.summary,
'published': result.published.strftime("%Y-%m-%d"),
'url': result.entry_id
})
return results
def _summarize_text(text: str) -> str:
"""
Summarize the provided text using the Hugging Face summarization pipeline.
Args:
text (str): The text to summarize.
Returns:
str: The summarized text.
"""
# For longer texts, consider chunking before summarizing.
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
return summary[0]['summary_text']
@tool
def personalized_research_assistant(query: str) -> str:
"""A tool that fetches relevant articles from arxiv and provides the information.
Args:
query: The research query to search for in arxiv.
"""
response = ""
articles = _search_arxiv(query)
for idx, article in enumerate(articles):
response += f"\nArticle {idx+1}:\n"
response += f"\nTitle: {article['title']}\n"
response += f"Authors: {', '.join(article['authors'])}\n"
response += f"Published on: {article['published']}\n"
response += f"URL: {article['url']}\n"
response += "Abstract Summary:\n"
response += f"{summarize_text(article['summary'])}\n"
response += "-" * 80
return response
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='https://wxknx1kg971u7k1n.us-east-1.aws.endpoints.huggingface.cloud',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer, image_generation_tool, DuckDuckGoSearchTool(), VisitWebpageTool(), get_current_time_in_timezone], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |