File size: 3,985 Bytes
9d980af
9b5b26a
 
 
c19d193
3118bd6
 
8fe992b
9b5b26a
3118bd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
 
3118bd6
 
 
9b5b26a
3118bd6
9b5b26a
3118bd6
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
e121372
bf6d34c
 
9a8c112
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
d638726
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from tools.visit_webpage import VisitWebpageTool

from Gradio_UI import GradioUI
import arxiv
from transformers import pipeline

# Initialize a summarization pipeline using a pre-trained model.
summarizer = pipeline("summarization")

def _search_arxiv(query: str, max_results: int = 5) -> list[dict[str, str | list[str]]]:
    """
    Search for research articles on arXiv based on the given query.
    
    Args:
        query (str): The search query.
        max_results (int): Maximum number of results to retrieve.
    
    Returns:
        list[dict[str, str | list[str]]]: Each dict contains title, authors, summary, publication date, and URL.
    """
    search = arxiv.Search(
        query=query,
        max_results=max_results,
        sort_by=arxiv.SortCriterion.SubmittedDate
    )
    results = []
    for result in search.results():
        results.append({
            'title': result.title,
            'authors': [author.name for author in result.authors],
            'summary': result.summary,
            'published': result.published.strftime("%Y-%m-%d"),
            'url': result.entry_id
        })
    return results

def _summarize_text(text: str) -> str:
    """
    Summarize the provided text using the Hugging Face summarization pipeline.
    
    Args:
        text (str): The text to summarize.
    
    Returns:
        str: The summarized text.
    """
    # For longer texts, consider chunking before summarizing.
    summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
    return summary[0]['summary_text']


@tool
def personalized_research_assistant(query: str) -> str:
    """A tool that fetches relevant articles from arxiv and provides the information.
    
    Args:
        query: The research query to search for in arxiv.
    """
    response = ""
    articles = _search_arxiv(query)
    for idx, article in enumerate(articles):
        response += f"\nArticle {idx+1}:\n"
        response += f"\nTitle: {article['title']}\n"
        response += f"Authors: {', '.join(article['authors'])}\n"
        response += f"Published on: {article['published']}\n"
        response += f"URL: {article['url']}\n"
        response += "Abstract Summary:\n"
        response += f"{summarize_text(article['summary'])}\n"
        response += "-" * 80
    return response
    

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='https://wxknx1kg971u7k1n.us-east-1.aws.endpoints.huggingface.cloud',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer, image_generation_tool, DuckDuckGoSearchTool(), VisitWebpageTool(), get_current_time_in_timezone], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()