mgokg's picture
Update app.py
f3c1430 verified
raw
history blame
4.46 kB
import gradio as gr
import requests
import os
import json
import google.generativeai as genai
from bs4 import BeautifulSoup
#from groq import Groq
# Load environment variables
genai.configure(api_key=os.environ["geminiapikey"])
read_key = os.environ.get('HF_TOKEN', None)
cx="77f1602c0ff764edb"
custom_css = """
#md {
height: 400px;
font-size: 30px;
background: #202020;
padding: 20px;
color: white;
border: 1 px solid white;
}
"""
#api_key = os.getenv('groq')
google_api_key = os.getenv('google_search')
#if api_key is None:
#raise ValueError("groq_whisper environment variable is not set")
# Initialize the Groq client
#client = Groq(api_key=api_key)
#very simple (and extremly fast) websearch
def websearch(prompt):
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36"
}
#url = f"https://www.googleapis.com/customsearch/v1?key={google_api_key}&cx={cx}&q={prompt}"
url = f"https://www.google.com/search?q={prompt}"
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.content, 'html.parser')
response_text = soup.find('body')
#prompt = f"{search_term}\n use this result from a google search to answer the question \n {response_text.text}"
#result = predict(prompt)
return response_text.text
response = requests.get(url, headers=headers)
data = response.json() # JSON-Daten direkt verarbeiten
# Extrahieren des Textes aus den Ergebnissen
items = data.get('items', [])
results = [item['snippet'] for item in items]
result_text = '\n'.join(results)
#return results[0]
return result_text
# URL der Google Custom Search API
url = f"https://www.googleapis.com/customsearch/v1?key={google_api_key}&cx={cx}&q={prompt}"
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.content, 'html.parser')
response_text = soup.find('body')
#prompt = f"{search_term}\n use this result from a google search to answer the question \n {response_text.text}"
#result = predict(prompt)
return response_text.text
def perform_search(prompt):
if prompt.strip() == '':
return '' # Return empty string for empty search
# URL der Google Custom Search API
url = f"https://www.googleapis.com/customsearch/v1?key={google_api_key}&cx={cx}&q={prompt}"
try:
# HTTP GET-Anfrage an die Google Custom Search API
response = requests.get(url)
# JSON-Antwort parsen
data = response.json()
# Extrahiere die Suchergebnisse
items = data.get('items', [])
results = [item['snippet'] for item in items]
#return results[0]
# Kombiniere die Ergebnisse zu einem String
result_text = '\n'.join(results)
#return results[0]
# Formuliere die Antwort
#search_query = f"{prompt} antworte kurz und knapp. antworte auf deutsch. du findest die antwort hier: {result_text}"
#result = predict(search_query)
#return result
return result_text
except requests.exceptions.RequestException as e:
print(f"An error occurred: {e}")
return ''
def predict(prompt):
generation_config = {
"temperature": 0.4,
"top_p": 0.95,
"top_k": 40,
"max_output_tokens": 8192,
"response_mime_type": "text/plain",
}
model = genai.GenerativeModel(
model_name="gemini-2.0-flash-exp",
generation_config=generation_config,
)
chat_session = model.start_chat(
history=[]
)
response = chat_session.send_message(f"{prompt}\n antworte immer auf deutsch")
response_value = response.candidates[0].content.parts[0].text
return response_value
# Create the Gradio interface
with gr.Blocks(css=custom_css) as demo:
with gr.Row():
details_output = gr.Markdown(label="answer", elem_id="md")
#details_output = gr.Textbox(label="Ausgabe", value = f"\n\n\n\n")
with gr.Row():
ort_input = gr.Textbox(label="prompt", placeholder="ask anything...")
#audio_input=gr.Microphone(type="filepath")
with gr.Row():
button = gr.Button("Senden")
# Connect the button to the function
button.click(fn=websearch, inputs=ort_input, outputs=details_output)
# Launch the Gradio application
demo.launch()