import gradio as gr import requests import os import json import google.generativeai as genai from bs4 import BeautifulSoup #from groq import Groq # Load environment variables genai.configure(api_key=os.environ["geminiapikey"]) read_key = os.environ.get('HF_TOKEN', None) cx="77f1602c0ff764edb" custom_css = """ #md { height: 400px; font-size: 30px; background: #202020; padding: 20px; color: white; border: 1 px solid white; } """ #api_key = os.getenv('groq') google_api_key = os.getenv('google_search') #if api_key is None: #raise ValueError("groq_whisper environment variable is not set") # Initialize the Groq client #client = Groq(api_key=api_key) #very simple (and extremly fast) websearch def websearch(prompt): headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36" } #url = f"https://www.googleapis.com/customsearch/v1?key={google_api_key}&cx={cx}&q={prompt}" url = f"https://www.google.com/search?q={prompt}" response = requests.get(url, headers=headers) soup = BeautifulSoup(response.content, 'html.parser') response_text = soup.find('body') #prompt = f"{search_term}\n use this result from a google search to answer the question \n {response_text.text}" #result = predict(prompt) return response_text.text response = requests.get(url, headers=headers) data = response.json() # JSON-Daten direkt verarbeiten # Extrahieren des Textes aus den Ergebnissen items = data.get('items', []) results = [item['snippet'] for item in items] result_text = '\n'.join(results) #return results[0] return result_text # URL der Google Custom Search API url = f"https://www.googleapis.com/customsearch/v1?key={google_api_key}&cx={cx}&q={prompt}" response = requests.get(url, headers=headers) soup = BeautifulSoup(response.content, 'html.parser') response_text = soup.find('body') #prompt = f"{search_term}\n use this result from a google search to answer the question \n {response_text.text}" #result = predict(prompt) return response_text.text def perform_search(prompt): if prompt.strip() == '': return '' # Return empty string for empty search # URL der Google Custom Search API url = f"https://www.googleapis.com/customsearch/v1?key={google_api_key}&cx={cx}&q={prompt}" try: # HTTP GET-Anfrage an die Google Custom Search API response = requests.get(url) # JSON-Antwort parsen data = response.json() # Extrahiere die Suchergebnisse items = data.get('items', []) results = [item['snippet'] for item in items] #return results[0] # Kombiniere die Ergebnisse zu einem String result_text = '\n'.join(results) #return results[0] # Formuliere die Antwort #search_query = f"{prompt} antworte kurz und knapp. antworte auf deutsch. du findest die antwort hier: {result_text}" #result = predict(search_query) #return result return result_text except requests.exceptions.RequestException as e: print(f"An error occurred: {e}") return '' def predict(prompt): generation_config = { "temperature": 0.4, "top_p": 0.95, "top_k": 40, "max_output_tokens": 8192, "response_mime_type": "text/plain", } model = genai.GenerativeModel( model_name="gemini-2.0-flash-exp", generation_config=generation_config, ) chat_session = model.start_chat( history=[] ) response = chat_session.send_message(f"{prompt}\n antworte immer auf deutsch") response_value = response.candidates[0].content.parts[0].text return response_value # Create the Gradio interface with gr.Blocks(css=custom_css) as demo: with gr.Row(): details_output = gr.Markdown(label="answer", elem_id="md") #details_output = gr.Textbox(label="Ausgabe", value = f"\n\n\n\n") with gr.Row(): ort_input = gr.Textbox(label="prompt", placeholder="ask anything...") #audio_input=gr.Microphone(type="filepath") with gr.Row(): button = gr.Button("Senden") # Connect the button to the function button.click(fn=websearch, inputs=ort_input, outputs=details_output) # Launch the Gradio application demo.launch()