File size: 7,016 Bytes
588ca16
48f06a6
c928d36
e0b040a
c928d36
 
 
4f8a74b
13a7675
c928d36
dad8300
c928d36
 
dad8300
c928d36
588ca16
 
c928d36
588ca16
 
c928d36
 
2b7139c
c928d36
 
 
 
588ca16
 
 
 
 
c928d36
 
 
 
 
 
 
49d4630
c928d36
dad8300
c928d36
2b7139c
c928d36
 
 
 
 
 
e0b040a
c928d36
e0b040a
588ca16
e0b040a
588ca16
c928d36
588ca16
e0b040a
dad8300
c928d36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b040a
c928d36
 
588ca16
e0b040a
c928d36
 
 
 
e0b040a
 
c928d36
 
 
 
 
 
 
588ca16
 
c928d36
 
588ca16
e0b040a
c928d36
 
 
e0b040a
c928d36
 
 
 
1bd1ac4
c928d36
e0b040a
c928d36
 
 
 
588ca16
c928d36
588ca16
dad8300
c928d36
e0b040a
c928d36
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b040a
c928d36
 
 
e0b040a
c928d36
e0b040a
 
c928d36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bd1ac4
49d4630
c928d36
 
f7cf3be
2deb7a7
588ca16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# app.py
"""
ShashaCodeβ€―Builder – AI code‑generation playground.

β€’ Huggingβ€―FaceΒ Spaces +Β Gradio front‑end
β€’ Supports prompts, file upload, web‑site scraping, optional web search
β€’ Streams code back, shows live HTML preview, can deploy to a user Space
"""

# ─────────────────────────────────────────  Imports
import gradio as gr
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Any

from constants import (                               # ← all constants live here
    HTML_SYSTEM_PROMPT,
    TRANSFORMERS_JS_SYSTEM_PROMPT,
    SYSTEM_PROMPTS,
    AVAILABLE_MODELS,
    DEMO_LIST,
    GRADIO_SUPPORTED_LANGUAGES,                      # ← new import
    SEARCH_START, DIVIDER, REPLACE_END,
)

from hf_client      import get_inference_client
from tavily_search  import enhance_query_with_search
from utils          import (                          # helpers split into utils.py
    history_to_messages,
    history_to_chatbot_messages,
    remove_code_block,
    parse_transformers_js_output,
    format_transformers_js_output,
    parse_svelte_output,
    format_svelte_output,
    apply_search_replace_changes,
    apply_transformers_js_search_replace_changes,
    extract_text_from_file,
    extract_website_content,
    get_gradio_language,
)
from deploy         import send_to_sandbox

# ─────────────────────────────────────────  Type Aliases
History = List[Tuple[str, str]]
ModelInfo = Dict[str, Any]

# ─────────────────────────────────────────  Core Function
def generate_code(
    query: str,
    file_path: Optional[str],
    website_url: Optional[str],
    model: ModelInfo,
    enable_search: bool,
    language: str,
    history: Optional[History],
) -> Tuple[str, History, str, List[Dict[str, str]]]:
    """Main inference pipeline: build prompt β†’ call model β†’ post‑process."""
    query = query or ""
    history = history or []

    # 1. pick system prompt
    if   language == "html":             system = HTML_SYSTEM_PROMPT
    elif language == "transformers.js":  system = TRANSFORMERS_JS_SYSTEM_PROMPT
    else:                                system = SYSTEM_PROMPTS.get(language, HTML_SYSTEM_PROMPT)

    # 2. build message list
    messages = history_to_messages(history, system)

    ctx_parts = [query.strip()]

    if file_path:    ctx_parts += ["[File]",    extract_text_from_file(file_path)[:5000]]
    if website_url:
        html = extract_website_content(website_url)
        if not html.startswith("Error"):
            ctx_parts += ["[Website]", html[:8000]]

    user_query = "\n\n".join(ctx_parts)
    user_query = enhance_query_with_search(user_query, enable_search)
    messages.append({"role": "user", "content": user_query})

    # 3. call model
    client = get_inference_client(model["id"])
    resp   = client.chat.completions.create(
        model=model["id"],
        messages=messages,
        max_tokens=16000,
        temperature=0.15,
    )
    answer = resp.choices[0].message.content

    # 4. post‑process
    if language == "transformers.js":
        files = parse_transformers_js_output(answer)
        code  = format_transformers_js_output(files)
        preview = send_to_sandbox(files.get("index.html", ""))
    else:
        clean  = remove_code_block(answer)
        if history and not history[-1][1].startswith("❌"):
            clean = apply_search_replace_changes(history[-1][1], clean)
        code    = clean
        preview = send_to_sandbox(code) if language == "html" else ""

    history.append((query, code))
    chat_msgs = history_to_chatbot_messages(history)
    return code, history, preview, chat_msgs


# ─────────────────────────────────────────  UI
LOGO_PATH = "assets/logo.png"                       # ensure this file exists

CUSTOM_CSS = """
body {font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;}
#logo {max-height:64px;margin:auto;}
"""

with gr.Blocks(css=CUSTOM_CSS, title="ShashaCodeβ€―Builder") as demo:
    state_history = gr.State([])
    state_model   = gr.State(AVAILABLE_MODELS[0])

    # Header
    with gr.Row():
        gr.Image(LOGO_PATH, elem_id="logo", show_label=False, height=64)
        gr.Markdown("## **AnyCoderΒ AI**\nYour AI partner for generating, modifying & understanding code.")

    # Sidebar (inputs)
    with gr.Row():
        with gr.Column(scale=1, min_width=300):
            # Model
            dd_model = gr.Dropdown(
                label="AIΒ Model",
                choices=[m["name"] for m in AVAILABLE_MODELS],
                value=AVAILABLE_MODELS[0]["name"],
            )

            # Prompt / File / Website tabs
            with gr.Tabs():
                with gr.Tab("Prompt"):
                    tb_prompt = gr.Textbox(label="Describe what you'd like to build…", lines=6)
                with gr.Tab("File"):
                    inp_file  = gr.File(label="Reference file", type="filepath")
                with gr.Tab("Website"):
                    tb_url    = gr.Textbox(label="URL to redesign")

            # Output config
            dd_lang = gr.Dropdown(
                label="Target language",
                choices=[l for l in GRADIO_SUPPORTED_LANGUAGES if l],  # ← fixed list
                value="html",
            )
            chk_search = gr.Checkbox(label="EnableΒ Tavily WebΒ Search")

            # Buttons
            btn_generate = gr.Button("Generateβ€―Code", variant="primary")
            btn_clear    = gr.Button("ClearΒ Session",  variant="secondary")

        # Main panel (outputs)
        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.Tab("Code"):
                    out_code = gr.Code(language="html", show_label=False)
                with gr.Tab("Preview"):
                    out_prev = gr.HTML()
                with gr.Tab("History"):
                    out_hist = gr.Chatbot(type="messages")

    # ─── Callbacks ─────────────────────────────────────────────
    def _model_from_name(name):
        return next((m for m in AVAILABLE_MODELS if m["name"] == name), AVAILABLE_MODELS[0])

    dd_model.change(lambda n: _model_from_name(n), inputs=dd_model, outputs=state_model)

    btn_generate.click(
        fn=generate_code,
        inputs=[tb_prompt, inp_file, tb_url, state_model, chk_search, dd_lang, state_history],
        outputs=[out_code, state_history, out_prev, out_hist],
    )

    btn_clear.click(lambda: ("", None, "", [], "", []),
                    outputs=[tb_prompt, inp_file, tb_url, state_history, out_code, out_prev])

if __name__ == "__main__":
    demo.queue().launch()