mgbam commited on
Commit
48f06a6
Β·
verified Β·
1 Parent(s): be4efb5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +175 -103
app.py CHANGED
@@ -1,129 +1,201 @@
1
  # app.py
2
- # --------------------------------------------------------------------
3
- # AnyCoderΒ /Β ShashaΒ AI – Gradio back‑end
4
- # --------------------------------------------------------------------
5
- """
6
- β€’ Renders the custom front‑end stored in index.html (+ static assets).
7
- β€’ Provides one API route (`POST /run/predict`) the JS front‑end calls
8
- to run model inference.
9
- β€’ Relies on helper modules (inference.py, models.py, utils.py, …)
10
- exactly as you already have them.
11
  """
 
12
 
13
- from pathlib import Path
14
- from typing import List, Tuple
 
 
15
 
16
  import gradio as gr
17
-
18
- # ── local helpers (unchanged) ────────────────────────────────────────
19
- from inference import chat_completion
 
 
 
 
 
 
 
20
  from tavily_search import enhance_query_with_search
21
- from models import AVAILABLE_MODELS, find_model, ModelInfo
22
- from deploy import send_to_sandbox
23
  from utils import (
24
  extract_text_from_file,
25
  extract_website_content,
 
26
  history_to_messages,
27
  history_to_chatbot_messages,
28
- apply_search_replace_changes,
29
  remove_code_block,
30
  parse_transformers_js_output,
31
  format_transformers_js_output,
32
  )
 
33
 
34
- # ── constants ────────────────────────────────────────────────────────
35
  History = List[Tuple[str, str]]
36
-
37
- SYSTEM_PROMPTS = {
38
- "html": (
39
- "ONLY USE HTML, CSS AND JAVASCRIPT. Return ONE html file "
40
- "wrapped in ```html ...```."
41
- ),
42
- "transformers.js": (
43
- "Generate THREE separate files (index.html / index.js / style.css) "
44
- "as three fenced blocks."
45
- ),
46
- }
47
-
48
- # ── core back‑end callback ───────────────────────────────────────────
49
- def generate(
50
- prompt: str,
51
- file_path: str | None,
52
- website_url: str | None,
53
- model_id: str,
54
- language: str,
 
 
 
55
  enable_search: bool,
56
- history: History | None,
57
- ) -> Tuple[str, History]:
58
- """Backend for /run/predict."""
 
59
  history = history or []
60
-
61
- # 1) system prompt + history
62
- system_prompt = SYSTEM_PROMPTS.get(language, f"You are an expert {language} developer.")
63
- messages = history_to_messages(history, system_prompt)
64
-
65
- ctx_parts: list[str] = [prompt.strip()]
66
-
67
- if file_path:
68
- ctx_parts.append("[File]")
69
- ctx_parts.append(extract_text_from_file(file_path)[:5_000])
70
- if website_url:
71
- html = extract_website_content(website_url)
72
- if not html.startswith("Error"):
73
- ctx_parts.append("[Website]")
74
- ctx_parts.append(html[:8_000])
75
-
76
- user_query = "\n\n".join(filter(None, ctx_parts))
77
- user_query = enhance_query_with_search(user_query, enable_search)
78
- messages.append({"role": "user", "content": user_query})
79
-
80
- # 2) model call
81
- model: ModelInfo = find_model(model_id) or AVAILABLE_MODELS[0]
82
- answer = chat_completion(model.id, messages)
83
-
84
- # 3) post‑processing
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  if language == "transformers.js":
86
- files = parse_transformers_js_output(answer)
87
  code = format_transformers_js_output(files)
 
88
  else:
89
- cleaned = remove_code_block(answer)
90
- if history and not history[-1][1].startswith("❌"):
91
- cleaned = apply_search_replace_changes(history[-1][1], cleaned)
92
- code = cleaned
93
-
94
- history.append((prompt, code))
95
- return code, history
96
-
97
-
98
- # ── read the custom HTML front‑end ───────────────────────────────────
99
- INDEX = Path("index.html").read_text(encoding="utf-8")
100
-
101
- # ── Gradio UI (wrapper only) ─────────────────────────────────────────
102
- with gr.Blocks(css="body{margin:0}", title="AnyCoderΒ AI") as demo:
103
- # 1Β visible: your static front‑end
104
- gr.HTML(INDEX) # ← NO unsafe_allow_html / sanitize
105
-
106
- # 2Β hidden components for the API call wiring
107
- with gr.Group(visible=False) as api:
108
- prompt_in = gr.Textbox()
109
- file_in = gr.File()
110
- url_in = gr.Textbox()
111
- model_in = gr.Textbox()
112
- lang_in = gr.Textbox()
113
- search_in = gr.Checkbox()
114
- hist_state = gr.State([])
115
-
116
- code_out, hist_out = gr.Textbox(), gr.State([])
117
-
118
- # bind /run/predict
119
- trig = gr.Button(visible=False)
120
- trig.click(
121
- generate,
122
- inputs=[prompt_in, file_in, url_in, model_in, lang_in, search_in, hist_state],
123
- outputs=[code_out, hist_out],
124
- api_name="predict",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
  )
126
 
127
- # ── static assets (.css / .js) are picked up automatically by HFΒ Spaces
128
  if __name__ == "__main__":
129
  demo.queue().launch()
 
1
  # app.py
2
+
 
 
 
 
 
 
 
 
3
  """
4
+ Main application file for SHASHA AI, a Gradio-based AI code generation tool.
5
 
6
+ Provides a UI for generating code in many languages using various AI models.
7
+ Supports text prompts, file uploads, website scraping, optional web search,
8
+ and live previews of HTML output.
9
+ """
10
 
11
  import gradio as gr
12
+ from typing import Optional, Dict, List, Tuple, Any
13
+
14
+ # --- Local module imports ---
15
+ from constants import (
16
+ HTML_SYSTEM_PROMPT,
17
+ TRANSFORMERS_JS_SYSTEM_PROMPT,
18
+ AVAILABLE_MODELS,
19
+ DEMO_LIST,
20
+ )
21
+ from hf_client import get_inference_client
22
  from tavily_search import enhance_query_with_search
 
 
23
  from utils import (
24
  extract_text_from_file,
25
  extract_website_content,
26
+ apply_search_replace_changes,
27
  history_to_messages,
28
  history_to_chatbot_messages,
 
29
  remove_code_block,
30
  parse_transformers_js_output,
31
  format_transformers_js_output,
32
  )
33
+ from deploy import send_to_sandbox
34
 
35
+ # --- Type aliases ---
36
  History = List[Tuple[str, str]]
37
+ Model = Dict[str, Any]
38
+
39
+ # --- Supported languages for dropdown ---
40
+ SUPPORTED_LANGUAGES = [
41
+ "python", "c", "cpp", "markdown", "latex", "json", "html", "css",
42
+ "javascript", "jinja2", "typescript", "yaml", "dockerfile", "shell",
43
+ "r", "sql", "sql-msSQL", "sql-mySQL", "sql-mariaDB", "sql-sqlite",
44
+ "sql-cassandra", "sql-plSQL", "sql-hive", "sql-pgSQL", "sql-gql",
45
+ "sql-gpSQL", "sql-sparkSQL", "sql-esper"
46
+ ]
47
+
48
+ def get_model_details(name: str) -> Optional[Model]:
49
+ for m in AVAILABLE_MODELS:
50
+ if m["name"] == name:
51
+ return m
52
+ return None
53
+
54
+ def generation_code(
55
+ query: Optional[str],
56
+ file: Optional[str],
57
+ website_url: Optional[str],
58
+ current_model: Model,
59
  enable_search: bool,
60
+ language: str,
61
+ history: Optional[History],
62
+ ) -> Tuple[str, History, str, List[Dict[str, str]]]:
63
+ query = query or ""
64
  history = history or []
65
+ try:
66
+ # Choose system prompt based on language
67
+ if language == "html":
68
+ system_prompt = HTML_SYSTEM_PROMPT
69
+ elif language == "transformers.js":
70
+ system_prompt = TRANSFORMERS_JS_SYSTEM_PROMPT
71
+ else:
72
+ # Generic fallback prompt
73
+ system_prompt = (
74
+ f"You are an expert {language} developer. "
75
+ f"Write clean, idiomatic {language} code based on the user's request."
76
+ )
77
+
78
+ model_id = current_model["id"]
79
+ # Determine provider
80
+ if model_id.startswith("openai/") or model_id in {"gpt-4", "gpt-3.5-turbo"}:
81
+ provider = "openai"
82
+ elif model_id.startswith("gemini/") or model_id.startswith("google/"):
83
+ provider = "gemini"
84
+ elif model_id.startswith("fireworks-ai/"):
85
+ provider = "fireworks-ai"
86
+ else:
87
+ provider = "auto"
88
+
89
+ # Build message history
90
+ msgs = history_to_messages(history, system_prompt)
91
+ context = query
92
+ if file:
93
+ ftext = extract_text_from_file(file)
94
+ context += f"\n\n[Attached file]\n{ftext[:5000]}"
95
+ if website_url:
96
+ wtext = extract_website_content(website_url)
97
+ if not wtext.startswith("Error"):
98
+ context += f"\n\n[Website content]\n{wtext[:8000]}"
99
+ final_q = enhance_query_with_search(context, enable_search)
100
+ msgs.append({"role": "user", "content": final_q})
101
+
102
+ # Call the model
103
+ client = get_inference_client(model_id, provider)
104
+ resp = client.chat.completions.create(
105
+ model=model_id,
106
+ messages=msgs,
107
+ max_tokens=16000,
108
+ temperature=0.1
109
+ )
110
+ content = resp.choices[0].message.content
111
+
112
+ except Exception as e:
113
+ err = f"❌ **Error:**\n```\n{e}\n```"
114
+ history.append((query, err))
115
+ return "", history, "", history_to_chatbot_messages(history)
116
+
117
+ # Process model output
118
  if language == "transformers.js":
119
+ files = parse_transformers_js_output(content)
120
  code = format_transformers_js_output(files)
121
+ preview = send_to_sandbox(files.get("index.html", ""))
122
  else:
123
+ cleaned = remove_code_block(content)
124
+ if history and history[-1][1] and not history[-1][1].startswith("❌"):
125
+ code = apply_search_replace_changes(history[-1][1], cleaned)
126
+ else:
127
+ code = cleaned
128
+ preview = send_to_sandbox(code) if language == "html" else ""
129
+
130
+ new_hist = history + [(query, code)]
131
+ chat = history_to_chatbot_messages(new_hist)
132
+ return code, new_hist, preview, chat
133
+
134
+ # --- Custom CSS ---
135
+ CUSTOM_CSS = """
136
+ body { font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif; }
137
+ #main_title { text-align: center; font-size: 2.5rem; margin-top: 1.5rem; }
138
+ #subtitle { text-align: center; color: #4a5568; margin-bottom: 2.5rem; }
139
+ .gradio-container { background-color: #f7fafc; }
140
+ #gen_btn { box-shadow: 0 4px 6px rgba(0,0,0,0.1); }
141
+ """
142
+
143
+ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue"), css=CUSTOM_CSS, title="Shasha AI") as demo:
144
+ history_state = gr.State([])
145
+ initial_model = AVAILABLE_MODELS[0]
146
+ model_state = gr.State(initial_model)
147
+
148
+ gr.Markdown("# πŸš€ Shasha AI", elem_id="main_title")
149
+ gr.Markdown("Your AI partner for generating, modifying, and understanding code.", elem_id="subtitle")
150
+
151
+ with gr.Row():
152
+ with gr.Column(scale=1):
153
+ gr.Markdown("### 1. Select Model")
154
+ model_dd = gr.Dropdown(
155
+ choices=[m["name"] for m in AVAILABLE_MODELS],
156
+ value=initial_model["name"],
157
+ label="AI Model"
158
+ )
159
+
160
+ gr.Markdown("### 2. Provide Context")
161
+ with gr.Tabs():
162
+ with gr.Tab("πŸ“ Prompt"):
163
+ prompt_in = gr.Textbox(lines=7, placeholder="Describe your request...", show_label=False)
164
+ with gr.Tab("πŸ“„ File"):
165
+ file_in = gr.File(type="filepath")
166
+ with gr.Tab("🌐 Website"):
167
+ url_in = gr.Textbox(placeholder="https://example.com")
168
+
169
+ gr.Markdown("### 3. Configure Output")
170
+ lang_dd = gr.Dropdown(SUPPORTED_LANGUAGES, value="html", label="Target Language")
171
+ search_chk = gr.Checkbox(label="Enable Web Search")
172
+
173
+ with gr.Row():
174
+ clr_btn = gr.Button("Clear Session", variant="secondary")
175
+ gen_btn = gr.Button("Generate Code", variant="primary", elem_id="gen_btn")
176
+
177
+ with gr.Column(scale=2):
178
+ with gr.Tabs():
179
+ with gr.Tab("πŸ’» Code"):
180
+ code_out = gr.Code(language="html", interactive=True)
181
+ with gr.Tab("πŸ‘οΈ Live Preview"):
182
+ preview_out = gr.HTML()
183
+ with gr.Tab("πŸ“œ History"):
184
+ chat_out = gr.Chatbot(type="messages")
185
+
186
+ model_dd.change(lambda n: get_model_details(n) or initial_model, inputs=[model_dd], outputs=[model_state])
187
+
188
+ gen_btn.click(
189
+ fn=generation_code,
190
+ inputs=[prompt_in, file_in, url_in, model_state, search_chk, lang_dd, history_state],
191
+ outputs=[code_out, history_state, preview_out, chat_out],
192
+ )
193
+
194
+ clr_btn.click(
195
+ lambda: ("", None, "", [], "", "", []),
196
+ outputs=[prompt_in, file_in, url_in, history_state, code_out, preview_out, chat_out],
197
+ queue=False,
198
  )
199
 
 
200
  if __name__ == "__main__":
201
  demo.queue().launch()