File size: 11,074 Bytes
6dcd973 10686a9 6dcd973 10686a9 6dcd973 6e5998c 6dcd973 5fecd0b 9b171dd 10686a9 6bc26de 9b171dd 6e5998c 10686a9 6dcd973 6e5998c 6dcd973 2bcb2e2 6dcd973 2bcb2e2 6dcd973 10686a9 6dcd973 6e5998c 6dcd973 6e5998c 6dcd973 6e5998c 6dcd973 10686a9 6dcd973 10686a9 6dcd973 6e5998c 6dcd973 2bcb2e2 6dcd973 10686a9 6dcd973 83257f1 6dcd973 e7d5ce8 6dcd973 10686a9 6dcd973 2bcb2e2 6dcd973 e7d5ce8 6dcd973 e7d5ce8 6dcd973 e7d5ce8 6dcd973 e7d5ce8 83257f1 e7d5ce8 83257f1 e7d5ce8 83257f1 e7d5ce8 83257f1 6dcd973 9b171dd 6bc26de f857f2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
"""
app.py
Main application file for AnyCoder, a Gradio-based AI code generation tool.
This application provides a user interface for generating code in various languages
using different AI models. It supports inputs from text prompts, files, images,
and websites, and includes features like web search enhancement and live code previews.
Structure:
- Imports & Configuration: Loads necessary libraries and constants.
- Helper Functions: Small utility functions supporting the UI logic.
- Core Application Logic: The main `generation_code` function that handles the AI interaction.
- UI Layout: Defines the Gradio interface using `gr.Blocks`.
- Event Wiring: Connects UI components to backend functions.
- Application Entry Point: Launches the Gradio app.
"""
import gradio as gr
from typing import Optional, Dict, List, Tuple, Any
# --- Local Module Imports ---
# These modules contain the application's configuration, clients, and utility functions.
# Note: These files (hf_client.py, etc.) must exist in the same directory.
from constants import SYSTEM_PROMPTS, AVAILABLE_MODELS, DEMO_LIST
from hf_client import get_inference_client
from tavily_search import enhance_query_with_search
from utils import (
extract_text_from_file,
extract_website_content,
apply_search_replace_changes,
history_to_messages,
history_to_chatbot_messages,
remove_code_block,
parse_transformers_js_output,
format_transformers_js_output
)
from deploy import send_to_sandbox, load_project_from_url
# --- Type Aliases and Constants ---
History = List[Tuple[str, str]]
Model = Dict[str, Any]
DEFAULT_SYSTEM_PROMPT = """
You are a helpful AI coding assistant. Your primary goal is to generate clean, correct, and efficient code based on the user's request.
- Follow the user's requirements precisely.
- If the user asks for a specific language, provide the code in that language.
- Enclose the final code in a single markdown code block (e.g., ```html ... ```).
- Do not include any conversational text, apologies, or explanations outside of the code block in your final response.
"""
# ==============================================================================
# HELPER FUNCTIONS
# ==============================================================================
def get_model_details(model_name: str) -> Optional[Model]:
"""Finds the full dictionary for a model given its name."""
for model in AVAILABLE_MODELS:
if model["name"] == model_name:
return model
return None
# ==============================================================================
# CORE APPLICATION LOGIC
# ==============================================================================
def generation_code(
query: Optional[str],
file: Optional[str],
website_url: Optional[str],
current_model: Model,
enable_search: bool,
language: str,
history: Optional[History],
hf_token: str,
) -> Tuple[str, History, str, List[Dict[str, str]]]:
"""
The main function to handle a user's code generation request.
"""
# 1. --- Initialization and Input Sanitization ---
query = query or ""
history = history or []
try:
# 2. --- System Prompt and Model Selection ---
system_prompt = SYSTEM_PROMPTS.get(language, DEFAULT_SYSTEM_PROMPT)
model_id = current_model["id"]
# Robustly determine the provider based on ID, falling back to a default
if model_id.startswith("openai/"):
provider = "openai"
elif model_id.startswith("gemini/"):
provider = "gemini"
elif model_id.startswith("fireworks-ai/"):
provider = "fireworks-ai"
else:
# Assume other models are served via standard Hugging Face TGI
provider = "huggingface"
# 3. --- Assemble Full Context for the AI ---
messages = history_to_messages(history, system_prompt)
context_query = query
if file:
text = extract_text_from_file(file)
context_query += f"\n\n[Attached File Content]\n{text[:5000]}"
if website_url:
text = extract_website_content(website_url)
if not text.startswith('Error'):
context_query += f"\n\n[Scraped Website Content]\n{text[:8000]}"
final_query = enhance_query_with_search(context_query, enable_search)
messages.append({'role': 'user', 'content': final_query})
# 4. --- AI Model Inference with Robust Error Handling ---
client = get_inference_client(model_id, provider, user_token=hf_token)
resp = client.chat.completions.create(
model=model_id,
messages=messages,
max_tokens=16384,
temperature=0.1
)
content = resp.choices[0].message.content
except Exception as e:
error_message = f"β **An error occurred:**\n\n```\n{str(e)}\n```\n\nPlease check your API keys, model selection, or try again."
history.append((query, error_message))
return "", history, "", history_to_chatbot_messages(history)
# 5. --- Post-process the AI's Output ---
if language == 'transformers.js':
files = parse_transformers_js_output(content)
code_str = format_transformers_js_output(files)
preview_html = send_to_sandbox(files.get('index.html', ''))
else:
clean_code = remove_code_block(content)
# Apply search/replace if a previous turn exists and contains valid code
if history and history[-1][1] and not history[-1][1].startswith("β"):
code_str = apply_search_replace_changes(history[-1][1], clean_code)
else:
code_str = clean_code
preview_html = send_to_sandbox(code_str) if language == 'html' else ''
# 6. --- Update History and Final Outputs ---
updated_history = history + [(query, code_str)]
chat_messages = history_to_chatbot_messages(updated_history)
return code_str, updated_history, preview_html, chat_messages
# ==============================================================================
# UI LAYOUT & EVENT WIRING
# ==============================================================================
# Custom CSS for a more professional and modern look
CUSTOM_CSS = """
body { font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, 'Helvetica Neue', Arial, sans-serif; }
#main_title { text-align: center; font-size: 2.5rem; font-weight: 700; color: #1a202c; margin: 1.5rem 0 0.5rem 0; }
#subtitle { text-align: center; color: #4a5568; margin-bottom: 2.5rem; font-size: 1.1rem; }
.gradio-container { background-color: #f7fafc; }
/* Custom styling for the generate button to make it stand out */
#gen_btn { box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06); }
"""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), title="AnyCoder - AI Code Generator", css=CUSTOM_CSS) as demo:
# --- State Management ---
history_state = gr.State([])
initial_model = AVAILABLE_MODELS[0]
model_state = gr.State(initial_model)
# --- UI Definition ---
gr.Markdown("# π Shasha AI", elem_id="main_title")
gr.Markdown("Your personal AI partner for generating, modifying, and understanding code.", elem_id="subtitle")
with gr.Row(equal_height=False):
# Left column for controls and inputs
with gr.Column(scale=1):
gr.Markdown("### 1. Select Model")
model_choices = [model["name"] for model in AVAILABLE_MODELS]
model_dd = gr.Dropdown(
choices=model_choices,
value=initial_model["name"],
label="AI Model",
info="Different models have different strengths."
)
gr.Markdown("### 2. Provide Context")
with gr.Tabs():
with gr.Tab("π Prompt"):
prompt_in = gr.Textbox(
label="Your Request",
lines=7,
placeholder="e.g., 'Create a modern, responsive landing page for a SaaS product.'",
show_label=False
)
with gr.Tab("π File"):
file_in = gr.File(label="Attach File (Optional)", type="filepath")
with gr.Tab("π Website"):
url_site = gr.Textbox(label="Scrape Website (Optional)", placeholder="https://example.com")
gr.Markdown("### 3. Configure Output")
language_dd = gr.Dropdown(
choices=["html", "python", "transformers.js", "sql", "javascript", "css"],
value="html",
label="Target Language"
)
search_chk = gr.Checkbox(label="Enable Web Search", info="Enhances AI with real-time info.")
with gr.Row():
clr_btn = gr.Button("Clear Session", variant="secondary")
gen_btn = gr.Button("Generate Code", variant="primary", elem_id="gen_btn")
# Right column for outputs
with gr.Column(scale=2):
with gr.Tabs() as main_tabs:
with gr.Tab("π» Code", id="code_tab"):
code_out = gr.Code(label="Generated Code", language="html", interactive=True)
with gr.Tab("ποΈ Live Preview", id="preview_tab"):
preview_out = gr.HTML(label="Live Preview")
with gr.Tab("π History", id="history_tab"):
chat_out = gr.Chatbot(label="Conversation History", type="messages")
# --- Event Wiring ---
def on_model_change(model_name: str) -> Dict:
"""Updates the model_state when the user selects a new model."""
model_details = get_model_details(model_name)
return model_details or initial_model
model_dd.change(fn=on_model_change, inputs=[model_dd], outputs=[model_state])
language_dd.change(fn=lambda lang: gr.update(language=lang), inputs=[language_dd], outputs=[code_out])
gen_btn.click(
fn=generation_code,
inputs=[
prompt_in, file_in, url_site,
model_state, search_chk, language_dd, history_state
],
outputs=[code_out, history_state, preview_out, chat_out]
)
def clear_session():
"""Resets all UI components and state to their initial values."""
return (
"", # prompt_in
None, # file_in
"", # url_site
[], # history_state
"", # code_out
"", # preview_out
[] # chat_out
)
clr_btn.click(
fn=clear_session,
outputs=[prompt_in, file_in, url_site, history_state, code_out, preview_out, chat_out],
queue=False
)
# ==============================================================================
# APPLICATION ENTRY POINT
# ==============================================================================
if __name__ == '__main__':
demo.queue().launch() |