mgbam commited on
Commit
5fecd0b
·
verified ·
1 Parent(s): 0ff9995

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -16
app.py CHANGED
@@ -4,21 +4,18 @@ from typing import Optional, Dict, List, Tuple
4
  import gradio as gr
5
 
6
  from constants import HTML_SYSTEM_PROMPT, AVAILABLE_MODELS, DEMO_LIST
7
- from hf_client import get_inference_client, tavily_client
8
  from tavily_search import enhance_query_with_search
9
  from utils import (
10
  extract_text_from_file,
11
  extract_website_content,
12
  apply_search_replace_changes,
13
- apply_transformers_js_search_replace_changes,
14
  history_to_messages,
15
  history_to_chatbot_messages,
16
  remove_code_block,
17
  parse_transformers_js_output,
18
  format_transformers_js_output
19
  )
20
- from search_replace import SEARCH_START, DIVIDER, REPLACE_END
21
- from web_scraper import extract_text_from_image
22
  from deploy import send_to_sandbox, handle_load_project
23
 
24
  # Type aliases
@@ -37,33 +34,28 @@ def generation_code(
37
  language: str,
38
  provider: str
39
  ) -> Tuple[str, History, str, List[Dict[str, str]]]:
40
- # Initialize inputs
41
  if query is None:
42
  query = ''
43
  if _history is None:
44
  _history = []
45
 
46
- # Prepare system prompt and history
47
  system_prompt = _setting.get('system', HTML_SYSTEM_PROMPT)
48
  messages = history_to_messages(_history, system_prompt)
49
 
50
- # Append file content if provided
51
  if file:
52
  file_text = extract_text_from_file(file)
53
  if file_text:
54
  query += f"\n\n[Reference file content below]\n{file_text[:5000]}"
55
 
56
- # Append website content if provided
57
  if website_url:
58
  website_text = extract_website_content(website_url)
59
  if not website_text.startswith("Error"):
60
  query += f"\n\n[Website content below]\n{website_text[:8000]}"
61
 
62
- # Enhance with web search if enabled
63
  final_query = enhance_query_with_search(query, enable_search)
64
  messages.append({'role': 'user', 'content': final_query})
65
 
66
- # Call HF inference
67
  client = get_inference_client(_current_model['id'], provider)
68
  completion = client.chat.completions.create(
69
  model=_current_model['id'],
@@ -72,7 +64,6 @@ def generation_code(
72
  )
73
  content = completion.choices[0].message.content
74
 
75
- # Process output based on language and existing content
76
  has_existing = bool(_history and _history[-1][1])
77
  if language == 'transformers.js':
78
  files = parse_transformers_js_output(content)
@@ -85,20 +76,17 @@ def generation_code(
85
  code_str = clean
86
  sandbox_html = send_to_sandbox(clean) if language == 'html' else ''
87
 
88
- # Update history and prepare chatbot messages
89
  new_history = _history + [(query, code_str)]
90
  chat_msgs = history_to_chatbot_messages(new_history)
91
 
92
- # Return exactly four outputs: code, history state, preview HTML, and chat history
93
  return code_str, new_history, sandbox_html, chat_msgs
94
 
95
- # Build Gradio UI
96
  with gr.Blocks(
97
  theme=gr.themes.Base(),
98
  title="AnyCoder - AI Code Generator"
99
  ) as demo:
100
  history_state = gr.State([])
101
- setting_state = gr.State({ 'system': HTML_SYSTEM_PROMPT })
102
  current_model = gr.State(AVAILABLE_MODELS[9])
103
 
104
  with gr.Sidebar():
@@ -108,7 +96,7 @@ with gr.Blocks(
108
  load_project_status = gr.Markdown(visible=False)
109
 
110
  input_box = gr.Textbox(label="What to build?", lines=3)
111
- language_dropdown = gr.Dropdown(choices=["html","python","transformers.js"], value="html")
112
  website_input = gr.Textbox(label="Website URL")
113
  file_input = gr.File(label="Reference file")
114
  image_input = gr.Image(label="Design image")
 
4
  import gradio as gr
5
 
6
  from constants import HTML_SYSTEM_PROMPT, AVAILABLE_MODELS, DEMO_LIST
7
+ from hf_client import get_inference_client
8
  from tavily_search import enhance_query_with_search
9
  from utils import (
10
  extract_text_from_file,
11
  extract_website_content,
12
  apply_search_replace_changes,
 
13
  history_to_messages,
14
  history_to_chatbot_messages,
15
  remove_code_block,
16
  parse_transformers_js_output,
17
  format_transformers_js_output
18
  )
 
 
19
  from deploy import send_to_sandbox, handle_load_project
20
 
21
  # Type aliases
 
34
  language: str,
35
  provider: str
36
  ) -> Tuple[str, History, str, List[Dict[str, str]]]:
37
+
38
  if query is None:
39
  query = ''
40
  if _history is None:
41
  _history = []
42
 
 
43
  system_prompt = _setting.get('system', HTML_SYSTEM_PROMPT)
44
  messages = history_to_messages(_history, system_prompt)
45
 
 
46
  if file:
47
  file_text = extract_text_from_file(file)
48
  if file_text:
49
  query += f"\n\n[Reference file content below]\n{file_text[:5000]}"
50
 
 
51
  if website_url:
52
  website_text = extract_website_content(website_url)
53
  if not website_text.startswith("Error"):
54
  query += f"\n\n[Website content below]\n{website_text[:8000]}"
55
 
 
56
  final_query = enhance_query_with_search(query, enable_search)
57
  messages.append({'role': 'user', 'content': final_query})
58
 
 
59
  client = get_inference_client(_current_model['id'], provider)
60
  completion = client.chat.completions.create(
61
  model=_current_model['id'],
 
64
  )
65
  content = completion.choices[0].message.content
66
 
 
67
  has_existing = bool(_history and _history[-1][1])
68
  if language == 'transformers.js':
69
  files = parse_transformers_js_output(content)
 
76
  code_str = clean
77
  sandbox_html = send_to_sandbox(clean) if language == 'html' else ''
78
 
 
79
  new_history = _history + [(query, code_str)]
80
  chat_msgs = history_to_chatbot_messages(new_history)
81
 
 
82
  return code_str, new_history, sandbox_html, chat_msgs
83
 
 
84
  with gr.Blocks(
85
  theme=gr.themes.Base(),
86
  title="AnyCoder - AI Code Generator"
87
  ) as demo:
88
  history_state = gr.State([])
89
+ setting_state = gr.State({'system': HTML_SYSTEM_PROMPT})
90
  current_model = gr.State(AVAILABLE_MODELS[9])
91
 
92
  with gr.Sidebar():
 
96
  load_project_status = gr.Markdown(visible=False)
97
 
98
  input_box = gr.Textbox(label="What to build?", lines=3)
99
+ language_dropdown = gr.Dropdown(choices=["html", "python", "transformers.js"], value="html")
100
  website_input = gr.Textbox(label="Website URL")
101
  file_input = gr.File(label="Reference file")
102
  image_input = gr.Image(label="Design image")