File size: 8,451 Bytes
93f08f4 48f06a6 2b7139c 4f8a74b 13a7675 93f08f4 583310d 93f08f4 2b7139c c558be9 2b7139c c558be9 1bd1ac4 c558be9 2b7139c 4f8a74b 1bd1ac4 93f08f4 1bd1ac4 93f08f4 2b7139c 48f06a6 2b7139c 1bd1ac4 2b7139c 93f08f4 2b7139c 93f08f4 2b7139c 93f08f4 2b7139c 93f08f4 2b7139c 93f08f4 2b7139c 1bd1ac4 2b7139c 93f08f4 2b7139c 4f8a74b 2b7139c 13a7675 2b7139c 1bd1ac4 13a7675 2b7139c 4f8a74b 2b7139c 1bd1ac4 2b7139c 1bd1ac4 2b7139c 93f08f4 1bd1ac4 2b7139c 1bd1ac4 2b7139c 1bd1ac4 93f08f4 2b7139c 1bd1ac4 c558be9 f7cf3be 2deb7a7 c558be9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# app.py
"""
Shasha /β―AnyCoderΒ AI β Gradio frontβend + backβend
Generate or refactor code with multiple foundation models.
Uploads, website scrape, optional Tavily search enrichment, live HTML preview.
"""
from __future__ import annotations
from typing import List, Tuple, Dict, Any, Optional
import gradio as gr
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Local helpers (unchanged)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
from constants import (
HTML_SYSTEM_PROMPT,
TRANSFORMERS_JS_SYSTEM_PROMPT,
AVAILABLE_MODELS,
)
from hf_client import get_inference_client
from tavily_search import enhance_query_with_search
from utils import (
extract_text_from_file,
extract_website_content,
apply_search_replace_changes,
history_to_messages,
history_to_chatbot_messages,
remove_code_block,
parse_transformers_js_output,
format_transformers_js_output,
)
from deploy import send_to_sandbox
History = List[Tuple[str, str]]
SUPPORTED_LANGUAGES = [
"python", "c", "cpp", "markdown", "latex", "json", "html", "css",
"javascript", "jinja2", "typescript", "yaml", "dockerfile", "shell",
"r", "sql", "sql-msSQL", "sql-mySQL", "sql-mariaDB", "sql-sqlite",
"sql-cassandra", "sql-plSQL", "sql-hive", "sql-pgSQL", "sql-gql",
"sql-gpSQL", "sql-sparkSQL", "sql-esper",
]
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Generation callback
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def generation_code(
query: Optional[str],
file_path: Optional[str],
website_url: Optional[str],
current_model: Dict[str, Any],
enable_search: bool,
language: str,
history: History | None,
) -> Tuple[str, History, str, List[Dict[str, str]]]:
"""Core backβend that the βGenerateΒ Codeβ button calls."""
query = (query or "").strip()
history = history or []
# Pick proper system prompt
if language == "html":
system_prompt = HTML_SYSTEM_PROMPT
elif language == "transformers.js":
system_prompt = TRANSFORMERS_JS_SYSTEM_PROMPT
else:
system_prompt = (
f"You are an expert {language} developer. "
f"Write clean, idiomatic {language} based on the user request."
)
# Route to provider
model_id = current_model["id"]
if model_id.startswith(("openai/", "gpt-")):
provider = "openai"
elif model_id.startswith(("gemini/", "google/")):
provider = "gemini"
elif model_id.startswith("fireworks-ai/"):
provider = "fireworks-ai"
else:
provider = "auto"
# Build message list
messages = history_to_messages(history, system_prompt)
context_parts: List[str] = [query]
if file_path:
context_parts.append("[Attachedβ―file]")
context_parts.append(extract_text_from_file(file_path)[:5_000])
if website_url:
html = extract_website_content(website_url)
if not html.startswith("Error"):
context_parts.append("[Websiteβ―content]")
context_parts.append(html[:8_000])
user_msg = "\n\n".join(context_parts)
user_msg = enhance_query_with_search(user_msg, enable_search)
messages.append({"role": "user", "content": user_msg})
# Call model
try:
client = get_inference_client(model_id, provider)
resp = client.chat.completions.create(
model = model_id,
messages = messages,
max_tokens = 16_000,
temperature= 0.1,
)
answer = resp.choices[0].message.content
except Exception as exc:
err = f"β **Error**\n```\n{exc}\n```"
history.append((query, err))
return "", history, "", history_to_chatbot_messages(history)
# Postβprocess
if language == "transformers.js":
files = parse_transformers_js_output(answer)
code = format_transformers_js_output(files)
preview = send_to_sandbox(files.get("index.html", ""))
else:
cleaned = remove_code_block(answer)
if history and not history[-1][1].startswith("β"):
cleaned = apply_search_replace_changes(history[-1][1], cleaned)
code = cleaned
preview = send_to_sandbox(code) if language == "html" else ""
history.append((query, code))
chat_history = history_to_chatbot_messages(history)
return code, history, preview, chat_history
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Gradio UI
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
CUSTOM_CSS = """
body{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,sans-serif;}
.gradio-container{background:#f9fafb;}
#gen-btn{box-shadow:0 2px 4px rgba(0,0,0,.08);}
"""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo"),
title="AnyCoderΒ AI",
css=CUSTOM_CSS) as demo:
state_history: gr.State = gr.State([])
state_model : gr.State = gr.State(AVAILABLE_MODELS[0])
gr.Markdown("## π’Β **AnyCoderΒ AI**\nYour AI partner for generating, modifying and understanding code.",
elem_id="header")
# 1Β Β·Β MODEL
gr.Markdown("### 1Β Β·Β Model")
model_dd = gr.Dropdown(
choices=[m["name"] for m in AVAILABLE_MODELS],
value=AVAILABLE_MODELS[0]["name"],
label="AIΒ Model",
)
# 2Β Β·Β CONTEXT
gr.Markdown("### 2Β Β·Β Context")
with gr.Tabs():
with gr.Tab("Prompt"):
prompt_tb = gr.Textbox(lines=6, placeholder="Describe what you needβ¦")
with gr.Tab("File"):
file_upl = gr.File(label="ReferenceΒ file")
import_btn= gr.Button("Importβ―Project", variant="secondary")
import_btn.click(lambda: print("import clicked"), outputs=[])
with gr.Tab("Website"):
url_tb = gr.Textbox(placeholder="https://example.com")
# 3Β Β·Β OUTPUT
gr.Markdown("### 3Β Β·Β Output")
lang_dd = gr.Dropdown(SUPPORTED_LANGUAGES, value="html", label="TargetΒ Language")
search_ck = gr.Checkbox(label="Enable Tavily WebΒ Search")
with gr.Row():
clear_btn = gr.Button("Clear Session", variant="secondary")
gen_btn = gr.Button("GenerateΒ Code", elem_id="gen-btn")
# OUTPUT PANELS
with gr.Tabs():
with gr.Tab("Code"):
code_out = gr.Code(language="html", interactive=True, lines=25)
with gr.Tab("LiveΒ Preview"):
preview = gr.HTML()
with gr.Tab("History"):
chatbox = gr.Chatbot(type="messages")
# ββ CALLBACKS ββββββββββββββββββββββββββββββββββββββββββββββ
model_dd.change(lambda n: next(m for m in AVAILABLE_MODELS if m["name"] == n),
inputs=model_dd, outputs=state_model)
gen_btn.click(
fn=generation_code,
inputs=[prompt_tb, file_upl, url_tb,
state_model, search_ck, lang_dd, state_history],
outputs=[code_out, state_history, preview, chatbox],
)
clear_btn.click(
lambda: ("", None, "", [], "", "", []),
outputs=[prompt_tb, file_upl, url_tb, state_history,
code_out, preview, chatbox],
queue=False,
)
if __name__ == "__main__":
demo.queue().launch()
|