File size: 7,372 Bytes
48f06a6 49d4630 e0b040a 49d4630 4f8a74b 13a7675 93f08f4 dad8300 49d4630 dad8300 49d4630 dad8300 49d4630 2b7139c 49d4630 e0b040a dad8300 49d4630 c558be9 49d4630 dad8300 49d4630 2b7139c 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a dad8300 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 1bd1ac4 e0b040a 49d4630 dad8300 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 49d4630 e0b040a 1bd1ac4 49d4630 2b7139c e0b040a 49d4630 1bd1ac4 49d4630 e0b040a 49d4630 e0b040a c558be9 f7cf3be 2deb7a7 e0b040a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
"""
app.py β AnyCoderΒ AI (Gradio)
* Logo: assets/logo.png
* Models: full list from constants.AVAILABLE_MODELS
* No height= arg on gr.Code (Gradio β₯5)
"""
from __future__ import annotations
import gradio as gr
from typing import List, Tuple, Dict, Optional
# ββ local modules ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
from constants import (
HTML_SYSTEM_PROMPT, HTML_SYSTEM_PROMPT_WITH_SEARCH,
TRANSFORMERS_JS_SYSTEM_PROMPT, TRANSFORMERS_JS_SYSTEM_PROMPT_WITH_SEARCH,
GENERIC_SYSTEM_PROMPT, GENERIC_SYSTEM_PROMPT_WITH_SEARCH,
TransformersJSFollowUpSystemPrompt, FollowUpSystemPrompt,
AVAILABLE_MODELS, DEMO_LIST, get_gradio_language,
)
from hf_client import get_inference_client
from tavily_search import enhance_query_with_search
from utils import (
extract_text_from_file, extract_website_content,
history_to_messages, history_to_chatbot_messages,
remove_code_block, parse_transformers_js_output,
format_transformers_js_output,
)
from search_replace import ( # <-- moved here
apply_search_replace_changes,
apply_transformers_js_search_replace_changes,
)
from deploy import send_to_sandbox
# ββ aliases ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
History = List[Tuple[str, str]]
Model = Dict[str, str]
# ββ code generation core βββββββββββββββββββββββββββββββββββββββββββββββββββ
def generate_code(
prompt: str,
file_path: Optional[str],
website_url: Optional[str],
model: Model,
language: str,
enable_search: bool,
history: Optional[History],
):
history = history or []
prompt = prompt or ""
# choose system prompt
if history:
system_prompt = (
TransformersJSFollowUpSystemPrompt if language == "transformers.js"
else FollowUpSystemPrompt
)
else:
if language == "html":
system_prompt = HTML_SYSTEM_PROMPT_WITH_SEARCH if enable_search else HTML_SYSTEM_PROMPT
elif language == "transformers.js":
system_prompt = TRANSFORMERS_JS_SYSTEM_PROMPT_WITH_SEARCH if enable_search else TRANSFORMERS_JS_SYSTEM_PROMPT
else:
system_prompt = (
GENERIC_SYSTEM_PROMPT_WITH_SEARCH.format(language=language)
if enable_search else GENERIC_SYSTEM_PROMPT.format(language=language)
)
messages = history_to_messages(history, system_prompt)
# attach context
if file_path:
prompt += f"\n\n[File]\n{extract_text_from_file(file_path)[:5000]}"
if website_url:
prompt += f"\n\n[Website]\n{extract_website_content(website_url)[:8000]}"
messages.append({"role": "user", "content": enhance_query_with_search(prompt, enable_search)})
# call model
client = get_inference_client(model["id"])
try:
resp = client.chat.completions.create(
model=model["id"],
messages=messages,
max_tokens=16000,
temperature=0.1,
)
answer = resp.choices[0].message.content
except Exception as e:
err = f"β **Error:**\n```\n{e}\n```"
history.append((prompt, err))
return err, history, "", history_to_chatbot_messages(history)
# postβprocess
if language == "transformers.js":
files = parse_transformers_js_output(answer)
code = format_transformers_js_output(files)
preview = send_to_sandbox(files["index.html"]) if files["index.html"] else ""
else:
clean = remove_code_block(answer)
if history and not history[-1][1].startswith("β"):
clean = apply_search_replace_changes(history[-1][1], clean)
code = clean
preview = send_to_sandbox(code) if language == "html" else ""
history.append((prompt, code))
chat_msgs = history_to_chatbot_messages(history)
return code, history, preview, chat_msgs
# ββ UI βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
theme = gr.themes.Base(primary_hue="indigo", font="Inter")
with gr.Blocks(theme=theme, title="AnyCoderΒ AI") as demo:
st_hist = gr.State([])
st_model = gr.State(AVAILABLE_MODELS[0])
# header with logo
gr.HTML(
'<div style="text-align:center;margin:1rem 0;">'
'<img src="assets/logo.png" alt="logo" style="width:120px;"><br>'
'<h1 style="margin:0.4rem 0 0">AnyCoderΒ AI</h1>'
'<p style="color:#555">Your AI partner for generating, modifying & understanding code.</p>'
'</div>'
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 1 Β· Model")
dd_model = gr.Dropdown([m["name"] for m in AVAILABLE_MODELS],
value=AVAILABLE_MODELS[0]["name"],
label="AIΒ Model")
gr.Markdown("### 2 Β· Context")
with gr.Tabs():
with gr.Tab("Prompt"):
tb_prompt = gr.Textbox(lines=6, placeholder="Describe what you wantβ¦")
with gr.Tab("File"):
fi_file = gr.File()
with gr.Tab("Website"):
tb_url = gr.Textbox(placeholder="https://example.com")
gr.Markdown("### 3 Β· Output")
dd_lang = gr.Dropdown(
[l for l in get_gradio_language.__defaults__[0] if l], # supported list
value="html",
label="Target language"
)
cb_search = gr.Checkbox(label="Enable Tavily Webβ―Search")
with gr.Row():
btn_clear = gr.Button("Clear", variant="secondary")
btn_gen = gr.Button("Generateβ―Code", variant="primary")
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("Code"):
code_out = gr.Code(language="html", lines=25)
with gr.Tab("Preview"):
html_prev = gr.HTML()
with gr.Tab("History"):
chat_out = gr.Chatbot(type="messages", height=400)
# quick demos
gr.Markdown("#### QuickΒ Start")
with gr.Row():
for d in DEMO_LIST[:6]:
gr.Button(d["title"], size="sm").click(
lambda desc=d["description"]: desc, outputs=tb_prompt
)
# callbacks
dd_model.change(lambda n: next(m for m in AVAILABLE_MODELS if m["name"] == n),
dd_model, st_model)
btn_gen.click(
generate_code,
inputs=[tb_prompt, fi_file, tb_url, st_model, dd_lang, cb_search, st_hist],
outputs=[code_out, st_hist, html_prev, chat_out],
)
btn_clear.click(
lambda: ("", None, "", [], [], "", ""),
outputs=[tb_prompt, fi_file, tb_url, st_hist, chat_out, code_out, html_prev],
queue=False,
)
if __name__ == "__main__":
demo.launch()
|