File size: 7,059 Bytes
31f94f1
6dcd973
31f94f1
 
6dcd973
 
 
 
 
 
10686a9
6dcd973
10686a9
6dcd973
5fecd0b
9b171dd
10686a9
 
 
 
 
 
 
 
 
 
31f94f1
9b171dd
10686a9
6dcd973
31f94f1
 
 
 
 
 
 
 
 
 
6e5998c
31f94f1
 
 
 
6e5998c
6dcd973
31f94f1
 
 
 
6dcd973
 
2bcb2e2
 
 
 
6dcd973
2bcb2e2
 
6dcd973
10686a9
6dcd973
 
 
6e5998c
6dcd973
31f94f1
 
 
6e5998c
 
 
 
 
 
 
6dcd973
31f94f1
 
 
6dcd973
31f94f1
 
6dcd973
31f94f1
 
 
 
 
6dcd973
31f94f1
6dcd973
 
31f94f1
 
6e5998c
6dcd973
 
 
 
31f94f1
 
6dcd973
 
31f94f1
 
10686a9
31f94f1
 
10686a9
31f94f1
6e5998c
31f94f1
6dcd973
31f94f1
 
10686a9
31f94f1
 
 
6dcd973
31f94f1
e7d5ce8
31f94f1
 
 
 
 
e7d5ce8
 
31f94f1
10686a9
31f94f1
 
2bcb2e2
e7d5ce8
 
 
31f94f1
e7d5ce8
 
31f94f1
 
6dcd973
e7d5ce8
 
 
31f94f1
e7d5ce8
31f94f1
e7d5ce8
31f94f1
e7d5ce8
 
31f94f1
 
e7d5ce8
 
31f94f1
 
e7d5ce8
 
31f94f1
 
 
 
 
 
 
83257f1
31f94f1
83257f1
31f94f1
83257f1
31f94f1
 
83257f1
 
31f94f1
 
 
 
83257f1
6dcd973
31f94f1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# app.py

"""
Main application file for SHASHA AI, a Gradio-based AI code generation tool.

This application provides a user interface for generating code in various languages
using different AI models. It supports inputs from text prompts, files, images,
and websites, and includes features like web search enhancement and live code previews.
"""

import gradio as gr
from typing import Optional, Dict, List, Tuple, Any

from constants import SYSTEM_PROMPTS, AVAILABLE_MODELS, DEMO_LIST
from hf_client import get_inference_client
from tavily_search import enhance_query_with_search
from utils import (
    extract_text_from_file,
    extract_website_content,
    apply_search_replace_changes,
    history_to_messages,
    history_to_chatbot_messages,
    remove_code_block,
    parse_transformers_js_output,
    format_transformers_js_output
)
from deploy import send_to_sandbox

History = List[Tuple[str, str]]
Model = Dict[str, Any]

# Full list of supported languages for syntax highlighting & generation
SUPPORTED_LANGUAGES = [
    "python", "c", "cpp", "markdown", "latex", "json", "html", "css",
    "javascript", "jinja2", "typescript", "yaml", "dockerfile", "shell",
    "r", "sql", "sql-msSQL", "sql-mySQL", "sql-mariaDB", "sql-sqlite",
    "sql-cassandra", "sql-plSQL", "sql-hive", "sql-pgSQL", "sql-gql",
    "sql-gpSQL", "sql-sparkSQL", "sql-esper"
]

DEFAULT_SYSTEM_PROMPT = """
You are a helpful AI coding assistant. Generate clean, correct, and efficient code based on the user's request.
- Follow requirements precisely.
- Enclose final code in a single ```code``` block of the target language.
- Do not include any explanations outside the code block.
"""

def get_model_details(name: str) -> Optional[Model]:
    for m in AVAILABLE_MODELS:
        if m["name"] == name:
            return m
    return None

def generation_code(
    query: Optional[str],
    file: Optional[str],
    website_url: Optional[str],
    current_model: Model,
    enable_search: bool,
    language: str,
    history: Optional[History],
) -> Tuple[str, History, str, List[Dict[str, str]]]:
    query = query or ""
    history = history or []
    try:
        system_prompt = SYSTEM_PROMPTS.get(language, DEFAULT_SYSTEM_PROMPT)
        model_id = current_model["id"]

        # pick provider
        if model_id.startswith("openai/") or model_id in ("gpt-4", "gpt-3.5-turbo"):
            provider = "openai"
        elif model_id.startswith("gemini/"):
            provider = "gemini"
        elif model_id.startswith("fireworks-ai/"):
            provider = "fireworks-ai"
        else:
            provider = "huggingface"

        # assemble messages
        msgs = history_to_messages(history, system_prompt)
        ctx = query
        if file:
            txt = extract_text_from_file(file)
            ctx += f"\n\n[File]\n{txt[:5000]}"
        if website_url:
            txt = extract_website_content(website_url)
            if not txt.startswith("Error"):
                ctx += f"\n\n[Website]\n{txt[:8000]}"
        final_q = enhance_query_with_search(ctx, enable_search)
        msgs.append({"role": "user", "content": final_q})

        client = get_inference_client(model_id, provider)
        resp = client.chat.completions.create(
            model=model_id,
            messages=msgs,
            max_tokens=16000,
            temperature=0.1
        )
        content = resp.choices[0].message.content

    except Exception as e:
        err = f"❌ **Error:**\n```\n{e}\n```"
        history.append((query, err))
        return "", history, "", history_to_chatbot_messages(history)

    # post-process
    if language == "transformers.js":
        files = parse_transformers_js_output(content)
        code = format_transformers_js_output(files)
        preview = send_to_sandbox(files.get("index.html",""))
    else:
        clean = remove_code_block(content)
        if history and history[-1][1] and not history[-1][1].startswith("❌"):
            code = apply_search_replace_changes(history[-1][1], clean)
        else:
            code = clean
        preview = send_to_sandbox(code) if language == "html" else ""

    new_hist = history + [(query, code)]
    chat = history_to_chatbot_messages(new_hist)
    return code, new_hist, preview, chat

# custom CSS
CUSTOM_CSS = """
body { font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif; }
#main_title { text-align: center; font-size: 2.5rem; margin: 1.5rem 0 0.5rem; }
#subtitle { text-align: center; color: #4a5568; margin-bottom: 2.5rem; }
.gradio-container { background: #f7fafc; }
#gen_btn { box-shadow: 0 4px 6px rgba(0,0,0,0.1); }
"""

with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue"), css=CUSTOM_CSS, title="Shasha AI") as demo:
    history_state = gr.State([])
    initial = AVAILABLE_MODELS[0]
    model_state = gr.State(initial)

    gr.Markdown("# πŸš€ Shasha AI", elem_id="main_title")
    gr.Markdown("Your personal AI partner for generating, modifying, and understanding code.", elem_id="subtitle")

    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### 1. Select Model")
            names = [m["name"] for m in AVAILABLE_MODELS]
            model_dd = gr.Dropdown(names, value=initial["name"], label="AI Model")

            gr.Markdown("### 2. Provide Context")
            with gr.Tabs():
                with gr.Tab("πŸ“ Prompt"):
                    prompt_in = gr.Textbox(lines=7, placeholder="Describe your request...", show_label=False)
                with gr.Tab("πŸ“„ File"):
                    file_in = gr.File(type="filepath")
                with gr.Tab("🌐 Website"):
                    url_in = gr.Textbox(placeholder="https://example.com")

            gr.Markdown("### 3. Configure Output")
            lang_dd = gr.Dropdown(SUPPORTED_LANGUAGES, value="html", label="Target Language")
            search_chk = gr.Checkbox(label="Enable Web Search")

            with gr.Row():
                clr = gr.Button("Clear Session", variant="secondary")
                gen = gr.Button("Generate Code", variant="primary", elem_id="gen_btn")

        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.Tab("πŸ’» Code"):
                    code_out = gr.Code(language=lambda: lang_dd.value, interactive=True)
                with gr.Tab("πŸ‘οΈ Live Preview"):
                    preview_out = gr.HTML()
                with gr.Tab("πŸ“œ History"):
                    chat_out = gr.Chatbot(type="messages")

    model_dd.change(lambda n: get_model_details(n) or initial, inputs=[model_dd], outputs=[model_state])

    gen.click(
        fn=generation_code,
        inputs=[prompt_in, file_in, url_in, model_state, search_chk, lang_dd, history_state],
        outputs=[code_out, history_state, preview_out, chat_out],
    )

    clr.click(
        fn=lambda: ("", None, "", [], "", "", []),
        outputs=[prompt_in, file_in, url_in, history_state, code_out, preview_out, chat_out],
        queue=False,
    )

if __name__ == "__main__":
    demo.queue().launch()