Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,140 +1,168 @@
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# =======================
|
7 |
-
#
|
8 |
# =======================
|
|
|
9 |
@st.cache_resource
|
10 |
-
def
|
11 |
"""
|
12 |
-
Load the pre-trained
|
13 |
-
Cached to prevent reloading on every app interaction.
|
14 |
"""
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
model = load_model()
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
explanation = f"The model predicts **{label}** with a confidence of {confidence:.2%}."
|
27 |
-
return label, confidence, explanation
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
"""
|
35 |
-
|
36 |
-
Cached to avoid repeated API calls.
|
37 |
"""
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
"limit": 5
|
43 |
-
}
|
44 |
-
response = requests.get(api_url, params=params)
|
45 |
-
if response.status_code == 200:
|
46 |
-
papers = response.json().get("data", [])
|
47 |
-
summaries = []
|
48 |
-
for paper in papers:
|
49 |
-
title = paper.get("title", "No Title")
|
50 |
-
abstract = paper.get("abstract", "No Abstract")
|
51 |
-
url = paper.get("url", "No URL")
|
52 |
-
summaries.append(f"**{title}**\n\n{abstract}\n\n[Read More]({url})")
|
53 |
-
return "\n\n---\n\n".join(summaries)
|
54 |
-
else:
|
55 |
-
return "Error fetching research papers. Please try again later."
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
66 |
|
67 |
-
st.sidebar.header("Navigation")
|
68 |
-
app_mode = st.sidebar.radio(
|
69 |
-
"Choose a feature",
|
70 |
-
["🔍 Skin Cancer Classification", "📄 Latest Research Papers", "ℹ️ About the Model"]
|
71 |
-
)
|
72 |
|
73 |
# =======================
|
74 |
-
#
|
75 |
# =======================
|
76 |
-
if app_mode == "🔍 Skin Cancer Classification":
|
77 |
-
st.title("🔍 Skin Cancer Classification")
|
78 |
-
st.write(
|
79 |
-
"Upload an image of the skin lesion, and the AI model will classify it as one of several types, "
|
80 |
-
"such as melanoma, basal cell carcinoma, or benign keratosis-like lesions."
|
81 |
-
)
|
82 |
|
83 |
-
|
84 |
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
88 |
|
89 |
-
#
|
90 |
-
st.
|
91 |
-
|
92 |
|
93 |
-
#
|
94 |
-
st.markdown(
|
95 |
-
|
96 |
-
st.markdown(f"### **Explanation**: {explanation}")
|
97 |
|
98 |
-
#
|
99 |
-
|
100 |
-
|
101 |
-
elif app_mode == "📄 Latest Research Papers":
|
102 |
-
st.title("📄 Latest Research Papers")
|
103 |
-
st.write(
|
104 |
-
"Fetch the latest research papers on skin cancer to stay updated on recent findings and innovations."
|
105 |
-
)
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
st.markdown(summaries)
|
111 |
|
112 |
-
#
|
113 |
-
|
114 |
-
|
115 |
-
elif
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
- Melanocytic nevi
|
126 |
-
- Melanoma
|
127 |
-
- Dermatofibroma
|
128 |
-
- **Performance Metrics:**
|
129 |
-
- **Validation Accuracy:** 96.95%
|
130 |
-
- **Train Accuracy:** 96.14%
|
131 |
-
- **Loss Function:** Cross-Entropy
|
132 |
-
""")
|
133 |
|
134 |
# =======================
|
135 |
# Footer
|
136 |
# =======================
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
140 |
""")
|
|
|
1 |
+
import os
|
2 |
+
import traceback
|
3 |
+
import numpy as np
|
4 |
import streamlit as st
|
|
|
5 |
from PIL import Image
|
6 |
+
from transformers import pipeline
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from skimage.color import rgb2gray
|
9 |
+
from skimage.filters import threshold_otsu
|
10 |
+
|
11 |
+
|
12 |
+
# =======================
|
13 |
+
# Configuration and Setup
|
14 |
+
# =======================
|
15 |
+
|
16 |
+
# Streamlit Page Configuration
|
17 |
+
st.set_page_config(
|
18 |
+
page_title="AI Cancer Detection Platform",
|
19 |
+
page_icon="🩺",
|
20 |
+
layout="wide",
|
21 |
+
initial_sidebar_state="expanded",
|
22 |
+
menu_items={
|
23 |
+
"About": "### AI Cancer Detection Platform\n"
|
24 |
+
"Developed to classify cancer images and provide research insights."
|
25 |
+
}
|
26 |
+
)
|
27 |
+
|
28 |
|
29 |
# =======================
|
30 |
+
# Helper Functions
|
31 |
# =======================
|
32 |
+
|
33 |
@st.cache_resource
|
34 |
+
def load_pipeline():
|
35 |
"""
|
36 |
+
Load the pre-trained image classification pipeline using PyTorch as the backend.
|
|
|
37 |
"""
|
38 |
+
try:
|
39 |
+
model_pipeline = pipeline(
|
40 |
+
"image-classification",
|
41 |
+
model="Anwarkh1/Skin_Cancer-Image_Classification",
|
42 |
+
framework="pt" # Force PyTorch backend
|
43 |
+
)
|
44 |
+
return model_pipeline
|
45 |
+
except Exception as e:
|
46 |
+
st.error(f"Error loading model: {e}")
|
47 |
+
traceback.print_exc()
|
48 |
+
st.stop()
|
49 |
|
|
|
50 |
|
51 |
+
def process_image(image):
|
52 |
+
"""
|
53 |
+
Perform image processing to extract features for better visualization.
|
54 |
+
"""
|
55 |
+
try:
|
56 |
+
# Convert image to grayscale
|
57 |
+
gray_image = rgb2gray(np.array(image))
|
|
|
|
|
58 |
|
59 |
+
# Apply Otsu's threshold
|
60 |
+
thresh = threshold_otsu(gray_image)
|
61 |
+
binary = gray_image > thresh
|
62 |
+
|
63 |
+
# Calculate edge pixel percentage
|
64 |
+
edge_pixels = np.sum(binary)
|
65 |
+
total_pixels = binary.size
|
66 |
+
edge_percentage = (edge_pixels / total_pixels) * 100
|
67 |
+
|
68 |
+
# Generate plots
|
69 |
+
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
70 |
+
ax[0].imshow(gray_image, cmap="gray")
|
71 |
+
ax[0].set_title("Grayscale Image")
|
72 |
+
ax[0].axis("off")
|
73 |
+
|
74 |
+
ax[1].imshow(binary, cmap="gray")
|
75 |
+
ax[1].set_title("Binary Image (Thresholded)")
|
76 |
+
ax[1].axis("off")
|
77 |
+
|
78 |
+
plt.tight_layout()
|
79 |
+
st.pyplot(fig)
|
80 |
+
|
81 |
+
# Feature description
|
82 |
+
return f"{edge_percentage:.2f}% of the image contains edge pixels after thresholding."
|
83 |
+
|
84 |
+
except Exception as e:
|
85 |
+
st.error(f"Error processing image: {e}")
|
86 |
+
traceback.print_exc()
|
87 |
+
return "No significant features extracted."
|
88 |
+
|
89 |
+
|
90 |
+
def classify_image(image, model_pipeline):
|
91 |
"""
|
92 |
+
Classify the uploaded image using the pre-trained model pipeline.
|
|
|
93 |
"""
|
94 |
+
try:
|
95 |
+
# Resize image to 224x224 as required by the model
|
96 |
+
image_resized = image.resize((224, 224))
|
97 |
+
predictions = model_pipeline(image_resized)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
if predictions:
|
100 |
+
top_prediction = predictions[0]
|
101 |
+
label = top_prediction["label"]
|
102 |
+
score = top_prediction["score"]
|
103 |
+
return label, score
|
104 |
+
else:
|
105 |
+
st.warning("No predictions were made.")
|
106 |
+
return None, None
|
107 |
+
except Exception as e:
|
108 |
+
st.error(f"Error during classification: {e}")
|
109 |
+
traceback.print_exc()
|
110 |
+
return None, None
|
111 |
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
# =======================
|
114 |
+
# Streamlit Main Content
|
115 |
# =======================
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
st.title("🩺 AI-Powered Cancer Detection")
|
118 |
|
119 |
+
# Image Upload Section
|
120 |
+
st.subheader("📤 Upload a Cancer Image")
|
121 |
+
uploaded_image = st.file_uploader("Choose an image file...", type=["png", "jpg", "jpeg"])
|
122 |
+
|
123 |
+
if uploaded_image is not None:
|
124 |
+
try:
|
125 |
+
# Open the uploaded image
|
126 |
+
image = Image.open(uploaded_image).convert("RGB")
|
127 |
+
|
128 |
+
# Display the uploaded image
|
129 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
130 |
|
131 |
+
# Process the image
|
132 |
+
st.markdown("### 🛠️ Image Processing")
|
133 |
+
processed_features = process_image(image)
|
134 |
|
135 |
+
# Load the model pipeline
|
136 |
+
st.markdown("### 🔍 Classifying the Image")
|
137 |
+
model_pipeline = load_pipeline()
|
|
|
138 |
|
139 |
+
# Classify the image
|
140 |
+
with st.spinner("Classifying..."):
|
141 |
+
label, confidence = classify_image(image, model_pipeline)
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
if label and confidence:
|
144 |
+
st.write(f"**Prediction:** {label}")
|
145 |
+
st.write(f"**Confidence:** {confidence:.2%}")
|
|
|
146 |
|
147 |
+
# Highlight prediction confidence
|
148 |
+
if confidence > 0.80:
|
149 |
+
st.success("High confidence in the prediction.")
|
150 |
+
elif confidence > 0.50:
|
151 |
+
st.warning("Moderate confidence in the prediction.")
|
152 |
+
else:
|
153 |
+
st.error("Low confidence in the prediction.")
|
154 |
+
|
155 |
+
except Exception as e:
|
156 |
+
st.error(f"An unexpected error occurred: {e}")
|
157 |
+
traceback.print_exc()
|
158 |
+
else:
|
159 |
+
st.info("Upload an image to start the classification.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
# =======================
|
162 |
# Footer
|
163 |
# =======================
|
164 |
+
|
165 |
+
st.markdown("""
|
166 |
+
---
|
167 |
+
**AI Cancer Detection Platform** | This application is for informational purposes only and is not intended for medical diagnosis.
|
168 |
""")
|