Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,40 @@
|
|
1 |
-
import
|
|
|
|
|
2 |
import requests
|
3 |
|
4 |
-
#
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
def classify_skin_cancer(image):
|
9 |
-
results =
|
10 |
label = results[0]['label']
|
11 |
confidence = results[0]['score']
|
12 |
explanation = f"The model predicts **{label}** with a confidence of {confidence:.2%}."
|
13 |
return label, confidence, explanation
|
14 |
|
15 |
-
#
|
|
|
|
|
|
|
16 |
def fetch_cancer_research():
|
|
|
|
|
|
|
|
|
17 |
api_url = "https://api.semanticscholar.org/graph/v1/paper/search"
|
18 |
params = {
|
19 |
"query": "skin cancer research",
|
@@ -33,75 +54,87 @@ def fetch_cancer_research():
|
|
33 |
else:
|
34 |
return "Error fetching research papers. Please try again later."
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
message = (
|
46 |
-
f"The prediction is **Benign Keratosis-like Lesion**, with a confidence of **{confidence:.2%}**. "
|
47 |
-
f"This is generally non-cancerous but can sometimes require medical observation. "
|
48 |
-
f"Consult a healthcare provider for a definitive diagnosis."
|
49 |
-
)
|
50 |
-
else:
|
51 |
-
message = (
|
52 |
-
f"The prediction is **{label}**, with a confidence of **{confidence:.2%}**. "
|
53 |
-
f"More detailed evaluation is recommended. Please consult a healthcare professional."
|
54 |
-
)
|
55 |
-
return message
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
with gr.Row():
|
67 |
-
image = gr.Image(type="pil", label="Upload Skin Image")
|
68 |
-
classify_button = gr.Button("Classify Image")
|
69 |
-
|
70 |
-
label = gr.Textbox(label="Predicted Label", interactive=False)
|
71 |
-
confidence = gr.Slider(label="Confidence", interactive=False, minimum=0, maximum=1, step=0.01)
|
72 |
-
explanation = gr.Textbox(label="Patient-Friendly Explanation", interactive=False)
|
73 |
-
|
74 |
-
classify_button.click(classify_skin_cancer, inputs=image, outputs=[label, confidence, explanation])
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
research_papers = gr.Markdown()
|
81 |
-
fetch_button.click(fetch_cancer_research, inputs=[], outputs=research_papers)
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
- **Model Architecture:** Vision Transformer (ViT)
|
87 |
-
- **Trained On:** Skin Cancer Dataset (ISIC)
|
88 |
-
- **Classes:** Benign keratosis-like lesions, Basal cell carcinoma, Actinic keratoses, Vascular lesions, Melanocytic nevi, Melanoma, Dermatofibroma
|
89 |
-
- **Performance Metrics:**
|
90 |
-
- **Validation Accuracy:** 96.95%
|
91 |
-
- **Train Accuracy:** 96.14%
|
92 |
-
- **Loss Function:** Cross-Entropy
|
93 |
-
""")
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
###
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
#
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
import requests
|
5 |
|
6 |
+
# =======================
|
7 |
+
# Caching the Model
|
8 |
+
# =======================
|
9 |
+
@st.cache_resource
|
10 |
+
def load_model():
|
11 |
+
"""
|
12 |
+
Load the pre-trained skin cancer classification model.
|
13 |
+
Cached to prevent reloading on every app interaction.
|
14 |
+
"""
|
15 |
+
return pipeline("image-classification", model="Anwarkh1/Skin_Cancer-Image_Classification")
|
16 |
|
17 |
+
model = load_model()
|
18 |
+
|
19 |
+
# =======================
|
20 |
+
# Functionality: Classify Skin Cancer
|
21 |
+
# =======================
|
22 |
def classify_skin_cancer(image):
|
23 |
+
results = model(image)
|
24 |
label = results[0]['label']
|
25 |
confidence = results[0]['score']
|
26 |
explanation = f"The model predicts **{label}** with a confidence of {confidence:.2%}."
|
27 |
return label, confidence, explanation
|
28 |
|
29 |
+
# =======================
|
30 |
+
# Functionality: Fetch Cancer Research Papers
|
31 |
+
# =======================
|
32 |
+
@st.cache_data
|
33 |
def fetch_cancer_research():
|
34 |
+
"""
|
35 |
+
Fetch the latest research papers related to skin cancer.
|
36 |
+
Cached to avoid repeated API calls.
|
37 |
+
"""
|
38 |
api_url = "https://api.semanticscholar.org/graph/v1/paper/search"
|
39 |
params = {
|
40 |
"query": "skin cancer research",
|
|
|
54 |
else:
|
55 |
return "Error fetching research papers. Please try again later."
|
56 |
|
57 |
+
# =======================
|
58 |
+
# Streamlit Page Config
|
59 |
+
# =======================
|
60 |
+
st.set_page_config(
|
61 |
+
page_title="AI-Powered Skin Cancer Detection",
|
62 |
+
page_icon="π©Ί",
|
63 |
+
layout="wide",
|
64 |
+
initial_sidebar_state="expanded"
|
65 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
st.sidebar.header("Navigation")
|
68 |
+
app_mode = st.sidebar.radio(
|
69 |
+
"Choose a feature",
|
70 |
+
["π Skin Cancer Classification", "π Latest Research Papers", "βΉοΈ About the Model"]
|
71 |
+
)
|
72 |
+
|
73 |
+
# =======================
|
74 |
+
# Skin Cancer Classification
|
75 |
+
# =======================
|
76 |
+
if app_mode == "π Skin Cancer Classification":
|
77 |
+
st.title("π Skin Cancer Classification")
|
78 |
+
st.write(
|
79 |
+
"Upload an image of the skin lesion, and the AI model will classify it as one of several types, "
|
80 |
+
"such as melanoma, basal cell carcinoma, or benign keratosis-like lesions."
|
81 |
+
)
|
82 |
|
83 |
+
uploaded_image = st.file_uploader("Upload a skin lesion image", type=["png", "jpg", "jpeg"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
if uploaded_image:
|
86 |
+
image = Image.open(uploaded_image).convert('RGB')
|
87 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
|
|
|
|
|
|
88 |
|
89 |
+
# Perform classification
|
90 |
+
st.write("Classifying...")
|
91 |
+
label, confidence, explanation = classify_skin_cancer(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
# Display results
|
94 |
+
st.markdown(f"### **Prediction**: {label}")
|
95 |
+
st.markdown(f"### **Confidence**: {confidence:.2%}")
|
96 |
+
st.markdown(f"### **Explanation**: {explanation}")
|
97 |
+
|
98 |
+
# =======================
|
99 |
+
# Latest Research Papers
|
100 |
+
# =======================
|
101 |
+
elif app_mode == "π Latest Research Papers":
|
102 |
+
st.title("π Latest Research Papers")
|
103 |
+
st.write(
|
104 |
+
"Fetch the latest research papers on skin cancer to stay updated on recent findings and innovations."
|
105 |
+
)
|
106 |
+
|
107 |
+
if st.button("Fetch Papers"):
|
108 |
+
with st.spinner("Fetching research papers..."):
|
109 |
+
summaries = fetch_cancer_research()
|
110 |
+
st.markdown(summaries)
|
111 |
+
|
112 |
+
# =======================
|
113 |
+
# About the Model
|
114 |
+
# =======================
|
115 |
+
elif app_mode == "βΉοΈ About the Model":
|
116 |
+
st.title("βΉοΈ About the Skin Cancer Detection Model")
|
117 |
+
st.markdown("""
|
118 |
+
- **Model Architecture:** Vision Transformer (ViT)
|
119 |
+
- **Trained On:** Skin Cancer Dataset (ISIC)
|
120 |
+
- **Classes:**
|
121 |
+
- Benign keratosis-like lesions
|
122 |
+
- Basal cell carcinoma
|
123 |
+
- Actinic keratoses
|
124 |
+
- Vascular lesions
|
125 |
+
- Melanocytic nevi
|
126 |
+
- Melanoma
|
127 |
+
- Dermatofibroma
|
128 |
+
- **Performance Metrics:**
|
129 |
+
- **Validation Accuracy:** 96.95%
|
130 |
+
- **Train Accuracy:** 96.14%
|
131 |
+
- **Loss Function:** Cross-Entropy
|
132 |
+
""")
|
133 |
|
134 |
+
# =======================
|
135 |
+
# Footer
|
136 |
+
# =======================
|
137 |
+
st.sidebar.info("""
|
138 |
+
Developed by **[mgbam](https://huggingface.co/mgbam)**
|
139 |
+
This app leverages state-of-the-art AI models for skin cancer detection and research insights.
|
140 |
+
""")
|