Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
import PyPDF2 | |
import docx | |
from sentence_transformers import SentenceTransformer | |
from groq import Groq | |
from transformers import pipeline | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
# Set up Groq API | |
client = Groq(api_key=os.environ.get("GROQ_API_KEY")) | |
# Load embedding model | |
embedder = SentenceTransformer("all-MiniLM-L6-v2") | |
# Title and UI | |
st.set_page_config(page_title="A&Q From a File", page_icon="π") | |
st.title("π A&Q From a File") | |
# File Upload | |
uploaded_file = st.file_uploader("Upload a PDF or DOCX file", type=["pdf", "docx"]) | |
if uploaded_file: | |
text = "" | |
# Extract text from PDF | |
if uploaded_file.type == "application/pdf": | |
pdf_reader = PyPDF2.PdfReader(uploaded_file) | |
for page in pdf_reader.pages: | |
text += page.extract_text() + "\n" | |
# Extract text from DOCX | |
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": | |
doc = docx.Document(uploaded_file) | |
for para in doc.paragraphs: | |
text += para.text + "\n" | |
# Chunking the text | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=500, chunk_overlap=50 | |
) | |
chunks = text_splitter.split_text(text) | |
# Embed chunks | |
embeddings = embedder.encode(chunks, convert_to_tensor=True) | |
# Query Input | |
user_query = st.text_input("Ask a question about the file:") | |
if user_query: | |
# Query Groq API | |
chat_completion = client.chat.completions.create( | |
messages=[ | |
{"role": "user", "content": f"Answer this question based on the uploaded document: {user_query}"} | |
], | |
model="llama-3.3-70b-versatile", | |
) | |
# Display answer | |
st.subheader("Answer:") | |
st.write(chat_completion.choices[0].message.content) | |