import os import streamlit as st import PyPDF2 import docx from sentence_transformers import SentenceTransformer from groq import Groq from transformers import pipeline from langchain.text_splitter import RecursiveCharacterTextSplitter # Set up Groq API client = Groq(api_key=os.environ.get("GROQ_API_KEY")) # Load embedding model embedder = SentenceTransformer("all-MiniLM-L6-v2") # Title and UI st.set_page_config(page_title="A&Q From a File", page_icon="📖") st.title("📖 A&Q From a File") # File Upload uploaded_file = st.file_uploader("Upload a PDF or DOCX file", type=["pdf", "docx"]) if uploaded_file: text = "" # Extract text from PDF if uploaded_file.type == "application/pdf": pdf_reader = PyPDF2.PdfReader(uploaded_file) for page in pdf_reader.pages: text += page.extract_text() + "\n" # Extract text from DOCX elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": doc = docx.Document(uploaded_file) for para in doc.paragraphs: text += para.text + "\n" # Chunking the text text_splitter = RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=50 ) chunks = text_splitter.split_text(text) # Embed chunks embeddings = embedder.encode(chunks, convert_to_tensor=True) # Query Input user_query = st.text_input("Ask a question about the file:") if user_query: # Query Groq API chat_completion = client.chat.completions.create( messages=[ {"role": "user", "content": f"Answer this question based on the uploaded document: {user_query}"} ], model="llama-3.3-70b-versatile", ) # Display answer st.subheader("Answer:") st.write(chat_completion.choices[0].message.content)