Spaces:
Running
Running
File size: 12,306 Bytes
e5985c6 e5ddac0 277d92a e5985c6 64cac75 e5ddac0 277d92a e5ddac0 277d92a e5ddac0 277d92a e5ddac0 277d92a e5ddac0 277d92a e5ddac0 277d92a e5ddac0 053d913 e5ddac0 277d92a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import urllib
import streamlit as st
import requests
import re
from stqdm import stqdm
import os
import shutil
import time
from bs4 import BeautifulSoup as bs
from datetime import datetime
from random import uniform as rand
import numpy as np
class XRxivQuery:
def __init__(self, search_query, max_results, folder_name='docs', XRxiv_servers = [], search_by='all', sort_by='relevance'):
self.search_query = search_query
self.max_results = max_results
self.folder_name = folder_name
self.XRxiv_servers = XRxiv_servers
self.search_by = search_by
self.sort_by = sort_by
self.all_pdf_info = []
self.all_pdf_citation = []
def call_API(self):
search_query = self.search_query.strip().replace(" ", "+").split('+')#.replace(", ", "+").replace(",", "+")#.split('+')
max_papers_in_server = distibute_max_papers(self.max_results, self.XRxiv_servers)
if 'rxiv' in self.XRxiv_servers:
'''
Scraps the arXiv's html to get data from each entry in a search. Entries has the following formatting:
<entry>\n
<id>http://arxiv.org/abs/2008.04584v2</id>\n
<updated>2021-05-11T12:00:24Z</updated>\n
<published>2020-08-11T08:47:06Z</published>\n
<title>Bayesian Selective Inference: Non-informative Priors</title>\n
<summary> We discuss Bayesian inference for parameters selected using the data. First,\nwe provide a critical analysis of the existing positions in the literature\nregarding the correct Bayesian approach under selection. Second, we propose two\ntypes of non-informative priors for selection models. These priors may be\nemployed to produce a posterior distribution in the absence of prior\ninformation as well as to provide well-calibrated frequentist inference for the\nselected parameter. We test the proposed priors empirically in several\nscenarios.\n</summary>\n
<author>\n <name>Daniel G. Rasines</name>\n </author>\n <author>\n <name>G. Alastair Young</name>\n </author>\n
<arxiv:comment xmlns:arxiv="http://arxiv.org/schemas/atom">24 pages, 7 figures</arxiv:comment>\n
<link href="http://arxiv.org/abs/2008.04584v2" rel="alternate" type="text/html"/>\n
<link title="pdf" href="http://arxiv.org/pdf/2008.04584v2" rel="related" type="application/pdf"/>\n
<arxiv:primary_category xmlns:arxiv="http://arxiv.org/schemas/atom" term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n
<category term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n
<category term="stat.TH" scheme="http://arxiv.org/schemas/atom"/>\n
</entry>\n
'''
# Call arXiv API
journal = 'arXiv'
max_rxiv_papers = max_papers_in_server[0]
arXiv_url=f'http://export.arxiv.org/api/query?search_query={self.search_by}:{"+".join(search_query)}&sortBy={self.sort_by}&start=0&max_results={max_rxiv_papers}'
with urllib.request.urlopen(arXiv_url) as url:
s = url.read()
# Parse the xml data
from lxml import html
root = html.fromstring(s)
# Fetch relevant pdf information
pdf_entries = root.xpath("entry")
pdf_titles = []
pdf_authors = []
pdf_urls = []
pdf_categories = []
folder_names = []
pdf_citation = []
pdf_years = []
for i, pdf in enumerate(pdf_entries):
pdf_titles.append(re.sub('[^a-zA-Z0-9]', ' ', pdf.xpath("title/text()")[0]))
pdf_authors.append(pdf.xpath("author/name/text()"))
pdf_urls.append(pdf.xpath("link[@title='pdf']/@href")[0])
pdf_categories.append(pdf.xpath("category/@term"))
folder_names.append(self.folder_name)
pdf_years.append(pdf.xpath('updated/text()')[0][:4])
pdf_citation.append(f"{', '.join(pdf_authors[i])}, {pdf_titles[i]}. {journal} [{pdf_categories[i][0]}] ({pdf_years[i]}), (available at {pdf_urls[i]}).")
pdf_info = list(zip(pdf_titles, pdf_urls, pdf_authors, pdf_categories, folder_names, pdf_citation))
self.all_pdf_info.append(pdf_info)
if 'biorxiv' in self.XRxiv_servers or 'medrxiv' in self.XRxiv_servers:
'''
Scraps the arXiv's html to get data from each entry in a search. Entries has the following formatting:
<li class="first last odd search-result result-jcode-medrxiv search-result-highwire-citation">
<div class="highwire-article-citation highwire-citation-type-highwire-article node" data-apath="/medrxiv/early/2021/02/18/2021.02.12.21251663.atom" data-pisa="medrxiv;2021.02.12.21251663v1" data-pisa-master="medrxiv;2021.02.12.21251663" id="node-medrxivearly202102182021021221251663atom1512875027"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-biorxiv-article-pap-list clearfix">
<span class="highwire-cite-title">
<a class="highwire-cite-linked-title" data-hide-link-title="0" data-icon-position="" href="http://medrxiv.org/content/early/2021/02/18/2021.02.12.21251663">
<span class="highwire-cite-title">ClinGen Variant Curation Interface: A Variant Classification Platform for the Application of Evidence Criteria from ACMG/AMP Guidelines</span></a> </span>
<div class="highwire-cite-authors"><span class="highwire-citation-authors">
<span class="highwire-citation-author first" data-delta="0"><span class="nlm-given-names">Christine G.</span> <span class="nlm-surname">Preston</span></span>,
<span class="highwire-citation-author" data-delta="1"><span class="nlm-given-names">Matt W.</span> <span class="nlm-surname">Wright</span></span>,
<span class="highwire-citation-author" data-delta="2"><span class="nlm-given-names">Rao</span> <span class="nlm-surname">Madhavrao</span></span>,
<div class="highwire-cite-metadata"><span class="highwire-cite-metadata-journal highwire-cite-metadata">medRxiv </span>
<span class="highwire-cite-metadata-pages highwire-cite-metadata">2021.02.12.21251663; </span><span class="highwire-cite-metadata-doi highwire-cite-metadata">
<span class="doi_label">doi:</span> https://doi.org/10.1101/2021.02.12.21251663 </span></div>
<div class="highwire-cite-extras"><div class="hw-make-citation" data-encoded-apath=";medrxiv;early;2021;02;18;2021.02.12.21251663.atom" data-seqnum="0" id="hw-make-citation-0">
<a class="link-save-citation-save use-ajax hw-link-save-unsave-catation link-icon" href="/highwire-save-citation/saveapath/%3Bmedrxiv%3Bearly%3B2021%3B02%3B18%3B2021.02.12.21251663.atom/nojs/0" id="link-save-citation-toggle-0" title="Save">
<span class="icon-plus"></span> <span class="title">Add to Selected Citations</span></a></div></div>
</div>
</div></li>
</entry>\n
'''
if 'biorxiv' in self.XRxiv_servers and 'medrxiv' not in self.XRxiv_servers:
# print('Searching biorxiv\n')
max_biorxiv_papers = max_papers_in_server[2]
journals_str = f'%20jcode%3Abiorxiv'
if 'biorxiv' not in self.XRxiv_servers and 'medrxiv' in self.XRxiv_servers:
# print('Searching medrxiv\n')
max_biorxiv_papers = max_papers_in_server[3]
journals_str = f'%20jcode%3Amedrxiv'
if 'biorxiv' in self.XRxiv_servers and 'medrxiv' in self.XRxiv_servers:
# print('Searching both biorxiv and medrxiv\n')
max_biorxiv_papers = max_papers_in_server[3]+ max_papers_in_server[2] # birxiv and medrxiv are together.
journals_str = f'%20jcode%3Abiorxiv%7C%7Cmedrxiv'
subject_str = ('%20').join(self.search_query[0].split())
for subject in search_query[1:]:
subject_str = subject_str + '%252B' + ('%20').join(subject.split())
current_dateTime = datetime.now()
today = str(current_dateTime)[:10]
start_day = '2013-01-01'
arXiv_url = f'https://www.biorxiv.org/search/'
arXiv_url += subject_str + journals_str + f'%20limit_from%3A2{start_day}%20limit_to%3A{today}%20numresults%3A{max_biorxiv_papers}%20sort%3Arelevance-rank%20format_result%3Astandard'
url_response = requests.post(arXiv_url)
html = bs(url_response.text, features='html.parser')
pdf_entries = html.find_all(attrs={'class': 'search-result'})
pdf_titles = []
pdf_authors = []
pdf_urls = []
pdf_categories = []
folder_names = []
pdf_citation = []
pdf_years = []
for i, pdf in enumerate(pdf_entries):
pdf_titles.append(pdf.find('span', attrs={'class': 'highwire-cite-title'}).text.strip())
pdf_authors.append(pdf.find('span', attrs={'class': 'highwire-citation-authors'}).text.strip().split(', '))
pdf_url = pdf.find('a', href=True)['href']
if pdf_url[:4] != 'http':
pdf_url = f'http://www.biorxiv.org'+ pdf_url
pdf_urls.append(pdf_url)
pdf_categories.append(pdf.find('span', attrs={'class': 'highwire-cite-metadata-journal highwire-cite-metadata'}).text.strip())
folder_names.append(self.folder_name)
pdf_years.append(pdf.find('span', attrs={'class': 'highwire-cite-metadata-pages highwire-cite-metadata'}).text.strip()[:4])
pdf_citation.append(f"{', '.join(pdf_authors[i])}, {pdf_titles[i]}. {pdf_categories[i]} ({pdf_years[i]}), (available at {pdf_urls[i]}).")
pdf_info = list(zip(pdf_titles, pdf_urls, pdf_authors, pdf_categories, folder_names, pdf_citation))
self.all_pdf_info.append(pdf_info)
self.all_pdf_info = [item for sublist in self.all_pdf_info for item in sublist]
return self.all_pdf_info
def download_pdf(self):
# if len(os.listdir(f'./{folder_name}') ) != 0:
# check folder is empty to avoid using papers from old runs:
# os.remove(f'./{folder_name}/*')
# print(pdf_info)
all_reference_text = []
for i,p in enumerate(stqdm(self.all_pdf_info, desc='π Searching and downloading papers')):
pdf_title=p[0]
pdf_category=p[3]
pdf_url=p[1]
if pdf_category in ['medRxiv', 'bioRxiv']:
pdf_url += '.full.pdf'
pdf_file_name=p[0].replace(':','').replace('/','').replace('.','')
folder_name=p[4]
pdf_citation=p[5]
r = requests.get(pdf_url, allow_redirects=True)
if i == 0:
if not os.path.exists(f'{folder_name}'):
os.makedirs(f"{folder_name}")
else:
shutil.rmtree(f'{folder_name}')
os.makedirs(f"{folder_name}")
with open(f'{folder_name}/{pdf_file_name}.pdf', 'wb') as f:
f.write(r.content)
if i == 0:
st.markdown("###### Papers found:")
st.markdown(f"{i+1}. {pdf_citation}")
time.sleep(0.15)
all_reference_text.append(f"{i+1}. {pdf_citation}\n")
if 'all_reference_text' not in st.session_state:
st.session_state.key = 'all_reference_text'
st.session_state['all_reference_text'] = ' '.join(all_reference_text)
def distibute_max_papers(max_results, XRxiv_servers):
fixed_length = len(XRxiv_servers)
sample = np.random.multinomial(max_results - fixed_length, np.ones(fixed_length)/fixed_length, size=1)[0] + 1
max_papers_in_server = np.zeros(4, dtype=int)
all_servers = ['rxiv', 'chemrxiv', 'biorxiv', 'medrxiv']
for i,s in enumerate(XRxiv_servers):
max_papers_in_server[all_servers.index(s)] = int(sample[i])
return max_papers_in_server
|