Spaces:
Sleeping
Sleeping
Commit
·
e5985c6
1
Parent(s):
c4550f6
cleaned repo, added utils
Browse files
app.py
CHANGED
|
@@ -1,13 +1,7 @@
|
|
| 1 |
import streamlit as st #Web App
|
| 2 |
-
import urllib
|
| 3 |
-
from lxml import html
|
| 4 |
-
import requests
|
| 5 |
-
import re
|
| 6 |
import os
|
| 7 |
-
from stqdm import stqdm
|
| 8 |
-
import time
|
| 9 |
-
import shutil
|
| 10 |
from PIL import Image
|
|
|
|
| 11 |
|
| 12 |
import pickle
|
| 13 |
docs = None
|
|
@@ -36,118 +30,14 @@ if len(api_key) != 51:
|
|
| 36 |
st.warning('Please enter a valid OpenAI API key.', icon="⚠️")
|
| 37 |
|
| 38 |
|
| 39 |
-
|
| 40 |
-
def call_arXiv_API(search_query, search_by='all', sort_by='relevance', max_results='10', folder_name='arxiv-dl'):
|
| 41 |
-
'''
|
| 42 |
-
Scraps the arXiv's html to get data from each entry in a search. Entries has the following formatting:
|
| 43 |
-
<entry>\n
|
| 44 |
-
<id>http://arxiv.org/abs/2008.04584v2</id>\n
|
| 45 |
-
<updated>2021-05-11T12:00:24Z</updated>\n
|
| 46 |
-
<published>2020-08-11T08:47:06Z</published>\n
|
| 47 |
-
<title>Bayesian Selective Inference: Non-informative Priors</title>\n
|
| 48 |
-
<summary> We discuss Bayesian inference for parameters selected using the data. First,\nwe provide a critical analysis of the existing positions in the literature\nregarding the correct Bayesian approach under selection. Second, we propose two\ntypes of non-informative priors for selection models. These priors may be\nemployed to produce a posterior distribution in the absence of prior\ninformation as well as to provide well-calibrated frequentist inference for the\nselected parameter. We test the proposed priors empirically in several\nscenarios.\n</summary>\n
|
| 49 |
-
<author>\n <name>Daniel G. Rasines</name>\n </author>\n <author>\n <name>G. Alastair Young</name>\n </author>\n
|
| 50 |
-
<arxiv:comment xmlns:arxiv="http://arxiv.org/schemas/atom">24 pages, 7 figures</arxiv:comment>\n
|
| 51 |
-
<link href="http://arxiv.org/abs/2008.04584v2" rel="alternate" type="text/html"/>\n
|
| 52 |
-
<link title="pdf" href="http://arxiv.org/pdf/2008.04584v2" rel="related" type="application/pdf"/>\n
|
| 53 |
-
<arxiv:primary_category xmlns:arxiv="http://arxiv.org/schemas/atom" term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n
|
| 54 |
-
<category term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n
|
| 55 |
-
<category term="stat.TH" scheme="http://arxiv.org/schemas/atom"/>\n
|
| 56 |
-
</entry>\n
|
| 57 |
-
'''
|
| 58 |
-
|
| 59 |
-
# Remove space in seach query
|
| 60 |
-
search_query=search_query.strip().replace(" ", "+")
|
| 61 |
-
# Call arXiv API
|
| 62 |
-
arXiv_url=f'http://export.arxiv.org/api/query?search_query={search_by}:{search_query}&sortBy={sort_by}&start=0&max_results={max_results}'
|
| 63 |
-
with urllib.request.urlopen(arXiv_url) as url:
|
| 64 |
-
s = url.read()
|
| 65 |
-
|
| 66 |
-
# Parse the xml data
|
| 67 |
-
root = html.fromstring(s)
|
| 68 |
-
# Fetch relevant pdf information
|
| 69 |
-
pdf_entries = root.xpath("entry")
|
| 70 |
-
|
| 71 |
-
pdf_titles = []
|
| 72 |
-
pdf_authors = []
|
| 73 |
-
pdf_urls = []
|
| 74 |
-
pdf_categories = []
|
| 75 |
-
folder_names = []
|
| 76 |
-
pdf_citation = []
|
| 77 |
-
pdf_years = []
|
| 78 |
-
|
| 79 |
-
for i, pdf in enumerate(pdf_entries):
|
| 80 |
-
# print(pdf.xpath('updated/text()')[0][:4])
|
| 81 |
-
# xpath return a list with every ocurrence of the html path. Since we're getting each entry individually, we'll take the first element to avoid an unecessary list
|
| 82 |
-
pdf_titles.append(re.sub('[^a-zA-Z0-9]', ' ', pdf.xpath("title/text()")[0]))
|
| 83 |
-
pdf_authors.append(pdf.xpath("author/name/text()"))
|
| 84 |
-
pdf_urls.append(pdf.xpath("link[@title='pdf']/@href")[0])
|
| 85 |
-
pdf_categories.append(pdf.xpath("category/@term"))
|
| 86 |
-
folder_names.append(folder_name)
|
| 87 |
-
pdf_years.append(pdf.xpath('updated/text()')[0][:4])
|
| 88 |
-
pdf_citation.append(f"{', '.join(pdf_authors[i])}, {pdf_titles[i]}. arXiv [{pdf_categories[i][0]}] ({pdf_years[i]}), (available at {pdf_urls[i]}).")
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
pdf_info=list(zip(pdf_titles, pdf_urls, pdf_authors, pdf_categories, folder_names, pdf_citation))
|
| 93 |
-
|
| 94 |
-
# Check number of available files
|
| 95 |
-
# print('Requesting {max_results} files'.format(max_results=max_results))
|
| 96 |
-
if len(pdf_urls)<int(max_results):
|
| 97 |
-
matching_pdf_num=len(pdf_urls)
|
| 98 |
-
# print('Only {matching_pdf_num} files available'.format(matching_pdf_num=matching_pdf_num))
|
| 99 |
-
return pdf_info, pdf_citation
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
def download_pdf(pdf_info):
|
| 103 |
-
|
| 104 |
-
# if len(os.listdir(f'./{folder_name}') ) != 0:
|
| 105 |
-
# check folder is empty to avoid using papers from old runs:
|
| 106 |
-
# os.remove(f'./{folder_name}/*')
|
| 107 |
-
all_reference_text = []
|
| 108 |
-
for i,p in enumerate(stqdm(pdf_info, desc='Searching and downloading papers')):
|
| 109 |
-
|
| 110 |
-
pdf_title=p[0]
|
| 111 |
-
pdf_url=p[1]
|
| 112 |
-
pdf_author=p[2]
|
| 113 |
-
pdf_category=p[3]
|
| 114 |
-
folder_name=p[4]
|
| 115 |
-
pdf_citation=p[5]
|
| 116 |
-
r = requests.get(pdf_url, allow_redirects=True)
|
| 117 |
-
if i == 0:
|
| 118 |
-
if not os.path.exists(f'{folder_name}'):
|
| 119 |
-
os.makedirs(f"{folder_name}")
|
| 120 |
-
else:
|
| 121 |
-
shutil.rmtree(f'{folder_name}')
|
| 122 |
-
os.makedirs(f"{folder_name}")
|
| 123 |
-
with open(f'{folder_name}/{pdf_title}.pdf', 'wb') as currP:
|
| 124 |
-
currP.write(r.content)
|
| 125 |
-
if i == 0:
|
| 126 |
-
st.markdown("###### Papers found:")
|
| 127 |
-
st.markdown(f"{i+1}. {pdf_citation}")
|
| 128 |
-
time.sleep(0.15)
|
| 129 |
-
all_reference_text.append(f"{i+1}. {pdf_citation}\n")
|
| 130 |
-
if 'all_reference_text' not in st.session_state:
|
| 131 |
-
st.session_state.key = 'all_reference_text'
|
| 132 |
-
st.session_state['all_reference_text'] = ' '.join(all_reference_text)
|
| 133 |
-
|
| 134 |
-
# print(all_reference_text)
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
max_results_current = 5
|
| 139 |
max_results = max_results_current
|
| 140 |
-
# pdf_info = ''
|
| 141 |
-
# pdf_citation = ''
|
| 142 |
def search_click_callback(search_query, max_results):
|
| 143 |
global pdf_info, pdf_citation
|
| 144 |
pdf_info, pdf_citation = call_arXiv_API(f'{search_query}', max_results=max_results)
|
| 145 |
download_pdf(pdf_info)
|
| 146 |
return pdf_info
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
with st.form(key='columns_in_form', clear_on_submit = False):
|
| 152 |
c1, c2 = st.columns([8,1])
|
| 153 |
with c1:
|
|
@@ -158,7 +48,6 @@ with st.form(key='columns_in_form', clear_on_submit = False):
|
|
| 158 |
max_results = st.text_input("Max papers", value=max_results_current)
|
| 159 |
max_results_current = max_results_current
|
| 160 |
searchButton = st.form_submit_button(label = 'Search')
|
| 161 |
-
# search_click(search_query, max_results_default)
|
| 162 |
|
| 163 |
if searchButton:
|
| 164 |
global pdf_info
|
|
@@ -166,39 +55,11 @@ if searchButton:
|
|
| 166 |
if 'pdf_info' not in st.session_state:
|
| 167 |
st.session_state.key = 'pdf_info'
|
| 168 |
st.session_state['pdf_info'] = pdf_info
|
| 169 |
-
# print(f'This is PDF info from search:{pdf_info}')
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
# def tokenize_callback():
|
| 173 |
-
|
| 174 |
-
# return docs
|
| 175 |
-
|
| 176 |
-
# tokenization_form = st.form(key='tokenization-form')
|
| 177 |
-
# tokenization_form.markdown(f"Happy with your paper search results? ")
|
| 178 |
-
# toknizeButton = tokenization_form.form_submit_button(label = "Yes! Let's tokenize.", on_click=tokenize_callback())
|
| 179 |
-
# tokenization_form.markdown("If not, change keywords and search again. [This step costs!](https://openai.com/api/pricing/)")
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
# submitButton = form.form_submit_button('Submit')
|
| 184 |
-
# with st.form(key='tokenization_form', clear_on_submit = False):
|
| 185 |
-
# st.markdown(f"Happy with your paper search results? If not, change keywords and search again. [This step costs!](https://openai.com/api/pricing/)")
|
| 186 |
-
# # st.text_input("Input search query here:", placeholder='Keywords for most relevant search...'
|
| 187 |
-
# # )#search_query, max_results_current))
|
| 188 |
-
# toknizeButton = st.form_submit_button(label = "Yes! Let's tokenize.")
|
| 189 |
-
|
| 190 |
-
# if toknizeButton:
|
| 191 |
-
# tokenize_callback()
|
| 192 |
-
|
| 193 |
-
# tokenize_callback()
|
| 194 |
-
|
| 195 |
-
|
| 196 |
|
| 197 |
|
| 198 |
def answer_callback(question_query):
|
| 199 |
import paperqa
|
| 200 |
global docs
|
| 201 |
-
# global pdf_info
|
| 202 |
progress_text = "Please wait..."
|
| 203 |
# my_bar = st.progress(0, text = progress_text)
|
| 204 |
st.info('Please wait...', icon="🔥")
|
|
@@ -221,8 +82,6 @@ def answer_callback(question_query):
|
|
| 221 |
st.success('Voila!')
|
| 222 |
return answer.formatted_answer
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
| 226 |
form = st.form(key='question_form')
|
| 227 |
question_query = form.text_input("What do you wanna know from these papers?", placeholder='Input questions here...',
|
| 228 |
value='')
|
|
@@ -232,39 +91,3 @@ if submitButton:
|
|
| 232 |
with st.expander("Found papers:", expanded=True):
|
| 233 |
st.write(f"{st.session_state['all_reference_text']}")
|
| 234 |
st.text_area("Answer:", answer_callback(question_query), height=600)
|
| 235 |
-
|
| 236 |
-
# with st.form(key='question_form', clear_on_submit = False):
|
| 237 |
-
# question_query = st.text_input("What do you wanna know from these papers?", placeholder='Input questions here')
|
| 238 |
-
# # st.text_input("Input search query here:", placeholder='Keywords for most relevant search...'
|
| 239 |
-
# # )#search_query, max_results_current))
|
| 240 |
-
# submitButton = form.form_submit_button(label = "Submit", on_click=answer_callback(question_query))
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
# Simulation-based inference bayesian model selection
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
# test = "<ul> \
|
| 250 |
-
# <li>List item here</li> \
|
| 251 |
-
# <li>List item here</li> \
|
| 252 |
-
# <li>List item here</li> \
|
| 253 |
-
# <li>List item here</li> \
|
| 254 |
-
# </ul>"
|
| 255 |
-
# test = "'''It was the best of times, it was the worst of times, it was \
|
| 256 |
-
# the age of wisdom, it was the age of foolishness, it was \
|
| 257 |
-
# the epoch of belief, it was the epoch of incredulity, it \
|
| 258 |
-
# was the season of Light, it was the season of Darkness, it\
|
| 259 |
-
# was the spring of hope, it was the winter of despair, (...)'''"
|
| 260 |
-
|
| 261 |
-
# citation_text = st.text_area('Papers found:',test, height=300) # f'{pdf_citation}'
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
# for i, cite in enumerate(pdf_citation):
|
| 265 |
-
# st.markdown(f'{i+1}. {cite}')
|
| 266 |
-
# time.sleep(1)
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
# def make_clickable('link',text):
|
| 270 |
-
# return f'<a target="_blank" href="{link}">{text}'
|
|
|
|
| 1 |
import streamlit as st #Web App
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import os
|
|
|
|
|
|
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
+
from unitls import *
|
| 5 |
|
| 6 |
import pickle
|
| 7 |
docs = None
|
|
|
|
| 30 |
st.warning('Please enter a valid OpenAI API key.', icon="⚠️")
|
| 31 |
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
max_results_current = 5
|
| 34 |
max_results = max_results_current
|
|
|
|
|
|
|
| 35 |
def search_click_callback(search_query, max_results):
|
| 36 |
global pdf_info, pdf_citation
|
| 37 |
pdf_info, pdf_citation = call_arXiv_API(f'{search_query}', max_results=max_results)
|
| 38 |
download_pdf(pdf_info)
|
| 39 |
return pdf_info
|
| 40 |
|
|
|
|
|
|
|
|
|
|
| 41 |
with st.form(key='columns_in_form', clear_on_submit = False):
|
| 42 |
c1, c2 = st.columns([8,1])
|
| 43 |
with c1:
|
|
|
|
| 48 |
max_results = st.text_input("Max papers", value=max_results_current)
|
| 49 |
max_results_current = max_results_current
|
| 50 |
searchButton = st.form_submit_button(label = 'Search')
|
|
|
|
| 51 |
|
| 52 |
if searchButton:
|
| 53 |
global pdf_info
|
|
|
|
| 55 |
if 'pdf_info' not in st.session_state:
|
| 56 |
st.session_state.key = 'pdf_info'
|
| 57 |
st.session_state['pdf_info'] = pdf_info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
|
| 60 |
def answer_callback(question_query):
|
| 61 |
import paperqa
|
| 62 |
global docs
|
|
|
|
| 63 |
progress_text = "Please wait..."
|
| 64 |
# my_bar = st.progress(0, text = progress_text)
|
| 65 |
st.info('Please wait...', icon="🔥")
|
|
|
|
| 82 |
st.success('Voila!')
|
| 83 |
return answer.formatted_answer
|
| 84 |
|
|
|
|
|
|
|
| 85 |
form = st.form(key='question_form')
|
| 86 |
question_query = form.text_input("What do you wanna know from these papers?", placeholder='Input questions here...',
|
| 87 |
value='')
|
|
|
|
| 91 |
with st.expander("Found papers:", expanded=True):
|
| 92 |
st.write(f"{st.session_state['all_reference_text']}")
|
| 93 |
st.text_area("Answer:", answer_callback(question_query), height=600)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
unitls.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import urllib
|
| 2 |
+
from lxml import html
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import requests
|
| 5 |
+
import re
|
| 6 |
+
from stqdm import stqdm
|
| 7 |
+
import os
|
| 8 |
+
import shutil
|
| 9 |
+
import time
|
| 10 |
+
|
| 11 |
+
def call_arXiv_API(search_query, search_by='all', sort_by='relevance', max_results='10', folder_name='arxiv-dl'):
|
| 12 |
+
'''
|
| 13 |
+
Scraps the arXiv's html to get data from each entry in a search. Entries has the following formatting:
|
| 14 |
+
<entry>\n
|
| 15 |
+
<id>http://arxiv.org/abs/2008.04584v2</id>\n
|
| 16 |
+
<updated>2021-05-11T12:00:24Z</updated>\n
|
| 17 |
+
<published>2020-08-11T08:47:06Z</published>\n
|
| 18 |
+
<title>Bayesian Selective Inference: Non-informative Priors</title>\n
|
| 19 |
+
<summary> We discuss Bayesian inference for parameters selected using the data. First,\nwe provide a critical analysis of the existing positions in the literature\nregarding the correct Bayesian approach under selection. Second, we propose two\ntypes of non-informative priors for selection models. These priors may be\nemployed to produce a posterior distribution in the absence of prior\ninformation as well as to provide well-calibrated frequentist inference for the\nselected parameter. We test the proposed priors empirically in several\nscenarios.\n</summary>\n
|
| 20 |
+
<author>\n <name>Daniel G. Rasines</name>\n </author>\n <author>\n <name>G. Alastair Young</name>\n </author>\n
|
| 21 |
+
<arxiv:comment xmlns:arxiv="http://arxiv.org/schemas/atom">24 pages, 7 figures</arxiv:comment>\n
|
| 22 |
+
<link href="http://arxiv.org/abs/2008.04584v2" rel="alternate" type="text/html"/>\n
|
| 23 |
+
<link title="pdf" href="http://arxiv.org/pdf/2008.04584v2" rel="related" type="application/pdf"/>\n
|
| 24 |
+
<arxiv:primary_category xmlns:arxiv="http://arxiv.org/schemas/atom" term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n
|
| 25 |
+
<category term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n
|
| 26 |
+
<category term="stat.TH" scheme="http://arxiv.org/schemas/atom"/>\n
|
| 27 |
+
</entry>\n
|
| 28 |
+
'''
|
| 29 |
+
|
| 30 |
+
# Remove space in seach query
|
| 31 |
+
search_query=search_query.strip().replace(" ", "+")
|
| 32 |
+
# Call arXiv API
|
| 33 |
+
arXiv_url=f'http://export.arxiv.org/api/query?search_query={search_by}:{search_query}&sortBy={sort_by}&start=0&max_results={max_results}'
|
| 34 |
+
with urllib.request.urlopen(arXiv_url) as url:
|
| 35 |
+
s = url.read()
|
| 36 |
+
|
| 37 |
+
# Parse the xml data
|
| 38 |
+
root = html.fromstring(s)
|
| 39 |
+
# Fetch relevant pdf information
|
| 40 |
+
pdf_entries = root.xpath("entry")
|
| 41 |
+
|
| 42 |
+
pdf_titles = []
|
| 43 |
+
pdf_authors = []
|
| 44 |
+
pdf_urls = []
|
| 45 |
+
pdf_categories = []
|
| 46 |
+
folder_names = []
|
| 47 |
+
pdf_citation = []
|
| 48 |
+
pdf_years = []
|
| 49 |
+
|
| 50 |
+
for i, pdf in enumerate(pdf_entries):
|
| 51 |
+
# print(pdf.xpath('updated/text()')[0][:4])
|
| 52 |
+
# xpath return a list with every ocurrence of the html path. Since we're getting each entry individually, we'll take the first element to avoid an unecessary list
|
| 53 |
+
pdf_titles.append(re.sub('[^a-zA-Z0-9]', ' ', pdf.xpath("title/text()")[0]))
|
| 54 |
+
pdf_authors.append(pdf.xpath("author/name/text()"))
|
| 55 |
+
pdf_urls.append(pdf.xpath("link[@title='pdf']/@href")[0])
|
| 56 |
+
pdf_categories.append(pdf.xpath("category/@term"))
|
| 57 |
+
folder_names.append(folder_name)
|
| 58 |
+
pdf_years.append(pdf.xpath('updated/text()')[0][:4])
|
| 59 |
+
pdf_citation.append(f"{', '.join(pdf_authors[i])}, {pdf_titles[i]}. arXiv [{pdf_categories[i][0]}] ({pdf_years[i]}), (available at {pdf_urls[i]}).")
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
pdf_info=list(zip(pdf_titles, pdf_urls, pdf_authors, pdf_categories, folder_names, pdf_citation))
|
| 64 |
+
|
| 65 |
+
# Check number of available files
|
| 66 |
+
# print('Requesting {max_results} files'.format(max_results=max_results))
|
| 67 |
+
if len(pdf_urls)<int(max_results):
|
| 68 |
+
matching_pdf_num=len(pdf_urls)
|
| 69 |
+
# print('Only {matching_pdf_num} files available'.format(matching_pdf_num=matching_pdf_num))
|
| 70 |
+
return pdf_info, pdf_citation
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def download_pdf(pdf_info):
|
| 74 |
+
|
| 75 |
+
# if len(os.listdir(f'./{folder_name}') ) != 0:
|
| 76 |
+
# check folder is empty to avoid using papers from old runs:
|
| 77 |
+
# os.remove(f'./{folder_name}/*')
|
| 78 |
+
all_reference_text = []
|
| 79 |
+
for i,p in enumerate(stqdm(pdf_info, desc='Searching and downloading papers')):
|
| 80 |
+
|
| 81 |
+
pdf_title=p[0]
|
| 82 |
+
pdf_url=p[1]
|
| 83 |
+
pdf_author=p[2]
|
| 84 |
+
pdf_category=p[3]
|
| 85 |
+
folder_name=p[4]
|
| 86 |
+
pdf_citation=p[5]
|
| 87 |
+
r = requests.get(pdf_url, allow_redirects=True)
|
| 88 |
+
if i == 0:
|
| 89 |
+
if not os.path.exists(f'{folder_name}'):
|
| 90 |
+
os.makedirs(f"{folder_name}")
|
| 91 |
+
else:
|
| 92 |
+
shutil.rmtree(f'{folder_name}')
|
| 93 |
+
os.makedirs(f"{folder_name}")
|
| 94 |
+
with open(f'{folder_name}/{pdf_title}.pdf', 'wb') as currP:
|
| 95 |
+
currP.write(r.content)
|
| 96 |
+
if i == 0:
|
| 97 |
+
st.markdown("###### Papers found:")
|
| 98 |
+
st.markdown(f"{i+1}. {pdf_citation}")
|
| 99 |
+
time.sleep(0.15)
|
| 100 |
+
all_reference_text.append(f"{i+1}. {pdf_citation}\n")
|
| 101 |
+
if 'all_reference_text' not in st.session_state:
|
| 102 |
+
st.session_state.key = 'all_reference_text'
|
| 103 |
+
st.session_state['all_reference_text'] = ' '.join(all_reference_text)
|