Spaces:
Running
Running
Commit
·
e5985c6
1
Parent(s):
c4550f6
cleaned repo, added utils
Browse files
app.py
CHANGED
@@ -1,13 +1,7 @@
|
|
1 |
import streamlit as st #Web App
|
2 |
-
import urllib
|
3 |
-
from lxml import html
|
4 |
-
import requests
|
5 |
-
import re
|
6 |
import os
|
7 |
-
from stqdm import stqdm
|
8 |
-
import time
|
9 |
-
import shutil
|
10 |
from PIL import Image
|
|
|
11 |
|
12 |
import pickle
|
13 |
docs = None
|
@@ -36,118 +30,14 @@ if len(api_key) != 51:
|
|
36 |
st.warning('Please enter a valid OpenAI API key.', icon="⚠️")
|
37 |
|
38 |
|
39 |
-
|
40 |
-
def call_arXiv_API(search_query, search_by='all', sort_by='relevance', max_results='10', folder_name='arxiv-dl'):
|
41 |
-
'''
|
42 |
-
Scraps the arXiv's html to get data from each entry in a search. Entries has the following formatting:
|
43 |
-
<entry>\n
|
44 |
-
<id>http://arxiv.org/abs/2008.04584v2</id>\n
|
45 |
-
<updated>2021-05-11T12:00:24Z</updated>\n
|
46 |
-
<published>2020-08-11T08:47:06Z</published>\n
|
47 |
-
<title>Bayesian Selective Inference: Non-informative Priors</title>\n
|
48 |
-
<summary> We discuss Bayesian inference for parameters selected using the data. First,\nwe provide a critical analysis of the existing positions in the literature\nregarding the correct Bayesian approach under selection. Second, we propose two\ntypes of non-informative priors for selection models. These priors may be\nemployed to produce a posterior distribution in the absence of prior\ninformation as well as to provide well-calibrated frequentist inference for the\nselected parameter. We test the proposed priors empirically in several\nscenarios.\n</summary>\n
|
49 |
-
<author>\n <name>Daniel G. Rasines</name>\n </author>\n <author>\n <name>G. Alastair Young</name>\n </author>\n
|
50 |
-
<arxiv:comment xmlns:arxiv="http://arxiv.org/schemas/atom">24 pages, 7 figures</arxiv:comment>\n
|
51 |
-
<link href="http://arxiv.org/abs/2008.04584v2" rel="alternate" type="text/html"/>\n
|
52 |
-
<link title="pdf" href="http://arxiv.org/pdf/2008.04584v2" rel="related" type="application/pdf"/>\n
|
53 |
-
<arxiv:primary_category xmlns:arxiv="http://arxiv.org/schemas/atom" term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n
|
54 |
-
<category term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n
|
55 |
-
<category term="stat.TH" scheme="http://arxiv.org/schemas/atom"/>\n
|
56 |
-
</entry>\n
|
57 |
-
'''
|
58 |
-
|
59 |
-
# Remove space in seach query
|
60 |
-
search_query=search_query.strip().replace(" ", "+")
|
61 |
-
# Call arXiv API
|
62 |
-
arXiv_url=f'http://export.arxiv.org/api/query?search_query={search_by}:{search_query}&sortBy={sort_by}&start=0&max_results={max_results}'
|
63 |
-
with urllib.request.urlopen(arXiv_url) as url:
|
64 |
-
s = url.read()
|
65 |
-
|
66 |
-
# Parse the xml data
|
67 |
-
root = html.fromstring(s)
|
68 |
-
# Fetch relevant pdf information
|
69 |
-
pdf_entries = root.xpath("entry")
|
70 |
-
|
71 |
-
pdf_titles = []
|
72 |
-
pdf_authors = []
|
73 |
-
pdf_urls = []
|
74 |
-
pdf_categories = []
|
75 |
-
folder_names = []
|
76 |
-
pdf_citation = []
|
77 |
-
pdf_years = []
|
78 |
-
|
79 |
-
for i, pdf in enumerate(pdf_entries):
|
80 |
-
# print(pdf.xpath('updated/text()')[0][:4])
|
81 |
-
# xpath return a list with every ocurrence of the html path. Since we're getting each entry individually, we'll take the first element to avoid an unecessary list
|
82 |
-
pdf_titles.append(re.sub('[^a-zA-Z0-9]', ' ', pdf.xpath("title/text()")[0]))
|
83 |
-
pdf_authors.append(pdf.xpath("author/name/text()"))
|
84 |
-
pdf_urls.append(pdf.xpath("link[@title='pdf']/@href")[0])
|
85 |
-
pdf_categories.append(pdf.xpath("category/@term"))
|
86 |
-
folder_names.append(folder_name)
|
87 |
-
pdf_years.append(pdf.xpath('updated/text()')[0][:4])
|
88 |
-
pdf_citation.append(f"{', '.join(pdf_authors[i])}, {pdf_titles[i]}. arXiv [{pdf_categories[i][0]}] ({pdf_years[i]}), (available at {pdf_urls[i]}).")
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
pdf_info=list(zip(pdf_titles, pdf_urls, pdf_authors, pdf_categories, folder_names, pdf_citation))
|
93 |
-
|
94 |
-
# Check number of available files
|
95 |
-
# print('Requesting {max_results} files'.format(max_results=max_results))
|
96 |
-
if len(pdf_urls)<int(max_results):
|
97 |
-
matching_pdf_num=len(pdf_urls)
|
98 |
-
# print('Only {matching_pdf_num} files available'.format(matching_pdf_num=matching_pdf_num))
|
99 |
-
return pdf_info, pdf_citation
|
100 |
-
|
101 |
-
|
102 |
-
def download_pdf(pdf_info):
|
103 |
-
|
104 |
-
# if len(os.listdir(f'./{folder_name}') ) != 0:
|
105 |
-
# check folder is empty to avoid using papers from old runs:
|
106 |
-
# os.remove(f'./{folder_name}/*')
|
107 |
-
all_reference_text = []
|
108 |
-
for i,p in enumerate(stqdm(pdf_info, desc='Searching and downloading papers')):
|
109 |
-
|
110 |
-
pdf_title=p[0]
|
111 |
-
pdf_url=p[1]
|
112 |
-
pdf_author=p[2]
|
113 |
-
pdf_category=p[3]
|
114 |
-
folder_name=p[4]
|
115 |
-
pdf_citation=p[5]
|
116 |
-
r = requests.get(pdf_url, allow_redirects=True)
|
117 |
-
if i == 0:
|
118 |
-
if not os.path.exists(f'{folder_name}'):
|
119 |
-
os.makedirs(f"{folder_name}")
|
120 |
-
else:
|
121 |
-
shutil.rmtree(f'{folder_name}')
|
122 |
-
os.makedirs(f"{folder_name}")
|
123 |
-
with open(f'{folder_name}/{pdf_title}.pdf', 'wb') as currP:
|
124 |
-
currP.write(r.content)
|
125 |
-
if i == 0:
|
126 |
-
st.markdown("###### Papers found:")
|
127 |
-
st.markdown(f"{i+1}. {pdf_citation}")
|
128 |
-
time.sleep(0.15)
|
129 |
-
all_reference_text.append(f"{i+1}. {pdf_citation}\n")
|
130 |
-
if 'all_reference_text' not in st.session_state:
|
131 |
-
st.session_state.key = 'all_reference_text'
|
132 |
-
st.session_state['all_reference_text'] = ' '.join(all_reference_text)
|
133 |
-
|
134 |
-
# print(all_reference_text)
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
max_results_current = 5
|
139 |
max_results = max_results_current
|
140 |
-
# pdf_info = ''
|
141 |
-
# pdf_citation = ''
|
142 |
def search_click_callback(search_query, max_results):
|
143 |
global pdf_info, pdf_citation
|
144 |
pdf_info, pdf_citation = call_arXiv_API(f'{search_query}', max_results=max_results)
|
145 |
download_pdf(pdf_info)
|
146 |
return pdf_info
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
with st.form(key='columns_in_form', clear_on_submit = False):
|
152 |
c1, c2 = st.columns([8,1])
|
153 |
with c1:
|
@@ -158,7 +48,6 @@ with st.form(key='columns_in_form', clear_on_submit = False):
|
|
158 |
max_results = st.text_input("Max papers", value=max_results_current)
|
159 |
max_results_current = max_results_current
|
160 |
searchButton = st.form_submit_button(label = 'Search')
|
161 |
-
# search_click(search_query, max_results_default)
|
162 |
|
163 |
if searchButton:
|
164 |
global pdf_info
|
@@ -166,39 +55,11 @@ if searchButton:
|
|
166 |
if 'pdf_info' not in st.session_state:
|
167 |
st.session_state.key = 'pdf_info'
|
168 |
st.session_state['pdf_info'] = pdf_info
|
169 |
-
# print(f'This is PDF info from search:{pdf_info}')
|
170 |
-
|
171 |
-
|
172 |
-
# def tokenize_callback():
|
173 |
-
|
174 |
-
# return docs
|
175 |
-
|
176 |
-
# tokenization_form = st.form(key='tokenization-form')
|
177 |
-
# tokenization_form.markdown(f"Happy with your paper search results? ")
|
178 |
-
# toknizeButton = tokenization_form.form_submit_button(label = "Yes! Let's tokenize.", on_click=tokenize_callback())
|
179 |
-
# tokenization_form.markdown("If not, change keywords and search again. [This step costs!](https://openai.com/api/pricing/)")
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
# submitButton = form.form_submit_button('Submit')
|
184 |
-
# with st.form(key='tokenization_form', clear_on_submit = False):
|
185 |
-
# st.markdown(f"Happy with your paper search results? If not, change keywords and search again. [This step costs!](https://openai.com/api/pricing/)")
|
186 |
-
# # st.text_input("Input search query here:", placeholder='Keywords for most relevant search...'
|
187 |
-
# # )#search_query, max_results_current))
|
188 |
-
# toknizeButton = st.form_submit_button(label = "Yes! Let's tokenize.")
|
189 |
-
|
190 |
-
# if toknizeButton:
|
191 |
-
# tokenize_callback()
|
192 |
-
|
193 |
-
# tokenize_callback()
|
194 |
-
|
195 |
-
|
196 |
|
197 |
|
198 |
def answer_callback(question_query):
|
199 |
import paperqa
|
200 |
global docs
|
201 |
-
# global pdf_info
|
202 |
progress_text = "Please wait..."
|
203 |
# my_bar = st.progress(0, text = progress_text)
|
204 |
st.info('Please wait...', icon="🔥")
|
@@ -221,8 +82,6 @@ def answer_callback(question_query):
|
|
221 |
st.success('Voila!')
|
222 |
return answer.formatted_answer
|
223 |
|
224 |
-
|
225 |
-
|
226 |
form = st.form(key='question_form')
|
227 |
question_query = form.text_input("What do you wanna know from these papers?", placeholder='Input questions here...',
|
228 |
value='')
|
@@ -232,39 +91,3 @@ if submitButton:
|
|
232 |
with st.expander("Found papers:", expanded=True):
|
233 |
st.write(f"{st.session_state['all_reference_text']}")
|
234 |
st.text_area("Answer:", answer_callback(question_query), height=600)
|
235 |
-
|
236 |
-
# with st.form(key='question_form', clear_on_submit = False):
|
237 |
-
# question_query = st.text_input("What do you wanna know from these papers?", placeholder='Input questions here')
|
238 |
-
# # st.text_input("Input search query here:", placeholder='Keywords for most relevant search...'
|
239 |
-
# # )#search_query, max_results_current))
|
240 |
-
# submitButton = form.form_submit_button(label = "Submit", on_click=answer_callback(question_query))
|
241 |
-
|
242 |
-
|
243 |
-
# Simulation-based inference bayesian model selection
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
# test = "<ul> \
|
250 |
-
# <li>List item here</li> \
|
251 |
-
# <li>List item here</li> \
|
252 |
-
# <li>List item here</li> \
|
253 |
-
# <li>List item here</li> \
|
254 |
-
# </ul>"
|
255 |
-
# test = "'''It was the best of times, it was the worst of times, it was \
|
256 |
-
# the age of wisdom, it was the age of foolishness, it was \
|
257 |
-
# the epoch of belief, it was the epoch of incredulity, it \
|
258 |
-
# was the season of Light, it was the season of Darkness, it\
|
259 |
-
# was the spring of hope, it was the winter of despair, (...)'''"
|
260 |
-
|
261 |
-
# citation_text = st.text_area('Papers found:',test, height=300) # f'{pdf_citation}'
|
262 |
-
|
263 |
-
|
264 |
-
# for i, cite in enumerate(pdf_citation):
|
265 |
-
# st.markdown(f'{i+1}. {cite}')
|
266 |
-
# time.sleep(1)
|
267 |
-
|
268 |
-
|
269 |
-
# def make_clickable('link',text):
|
270 |
-
# return f'<a target="_blank" href="{link}">{text}'
|
|
|
1 |
import streamlit as st #Web App
|
|
|
|
|
|
|
|
|
2 |
import os
|
|
|
|
|
|
|
3 |
from PIL import Image
|
4 |
+
from unitls import *
|
5 |
|
6 |
import pickle
|
7 |
docs = None
|
|
|
30 |
st.warning('Please enter a valid OpenAI API key.', icon="⚠️")
|
31 |
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
max_results_current = 5
|
34 |
max_results = max_results_current
|
|
|
|
|
35 |
def search_click_callback(search_query, max_results):
|
36 |
global pdf_info, pdf_citation
|
37 |
pdf_info, pdf_citation = call_arXiv_API(f'{search_query}', max_results=max_results)
|
38 |
download_pdf(pdf_info)
|
39 |
return pdf_info
|
40 |
|
|
|
|
|
|
|
41 |
with st.form(key='columns_in_form', clear_on_submit = False):
|
42 |
c1, c2 = st.columns([8,1])
|
43 |
with c1:
|
|
|
48 |
max_results = st.text_input("Max papers", value=max_results_current)
|
49 |
max_results_current = max_results_current
|
50 |
searchButton = st.form_submit_button(label = 'Search')
|
|
|
51 |
|
52 |
if searchButton:
|
53 |
global pdf_info
|
|
|
55 |
if 'pdf_info' not in st.session_state:
|
56 |
st.session_state.key = 'pdf_info'
|
57 |
st.session_state['pdf_info'] = pdf_info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
def answer_callback(question_query):
|
61 |
import paperqa
|
62 |
global docs
|
|
|
63 |
progress_text = "Please wait..."
|
64 |
# my_bar = st.progress(0, text = progress_text)
|
65 |
st.info('Please wait...', icon="🔥")
|
|
|
82 |
st.success('Voila!')
|
83 |
return answer.formatted_answer
|
84 |
|
|
|
|
|
85 |
form = st.form(key='question_form')
|
86 |
question_query = form.text_input("What do you wanna know from these papers?", placeholder='Input questions here...',
|
87 |
value='')
|
|
|
91 |
with st.expander("Found papers:", expanded=True):
|
92 |
st.write(f"{st.session_state['all_reference_text']}")
|
93 |
st.text_area("Answer:", answer_callback(question_query), height=600)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
unitls.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import urllib
|
2 |
+
from lxml import html
|
3 |
+
import streamlit as st
|
4 |
+
import requests
|
5 |
+
import re
|
6 |
+
from stqdm import stqdm
|
7 |
+
import os
|
8 |
+
import shutil
|
9 |
+
import time
|
10 |
+
|
11 |
+
def call_arXiv_API(search_query, search_by='all', sort_by='relevance', max_results='10', folder_name='arxiv-dl'):
|
12 |
+
'''
|
13 |
+
Scraps the arXiv's html to get data from each entry in a search. Entries has the following formatting:
|
14 |
+
<entry>\n
|
15 |
+
<id>http://arxiv.org/abs/2008.04584v2</id>\n
|
16 |
+
<updated>2021-05-11T12:00:24Z</updated>\n
|
17 |
+
<published>2020-08-11T08:47:06Z</published>\n
|
18 |
+
<title>Bayesian Selective Inference: Non-informative Priors</title>\n
|
19 |
+
<summary> We discuss Bayesian inference for parameters selected using the data. First,\nwe provide a critical analysis of the existing positions in the literature\nregarding the correct Bayesian approach under selection. Second, we propose two\ntypes of non-informative priors for selection models. These priors may be\nemployed to produce a posterior distribution in the absence of prior\ninformation as well as to provide well-calibrated frequentist inference for the\nselected parameter. We test the proposed priors empirically in several\nscenarios.\n</summary>\n
|
20 |
+
<author>\n <name>Daniel G. Rasines</name>\n </author>\n <author>\n <name>G. Alastair Young</name>\n </author>\n
|
21 |
+
<arxiv:comment xmlns:arxiv="http://arxiv.org/schemas/atom">24 pages, 7 figures</arxiv:comment>\n
|
22 |
+
<link href="http://arxiv.org/abs/2008.04584v2" rel="alternate" type="text/html"/>\n
|
23 |
+
<link title="pdf" href="http://arxiv.org/pdf/2008.04584v2" rel="related" type="application/pdf"/>\n
|
24 |
+
<arxiv:primary_category xmlns:arxiv="http://arxiv.org/schemas/atom" term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n
|
25 |
+
<category term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n
|
26 |
+
<category term="stat.TH" scheme="http://arxiv.org/schemas/atom"/>\n
|
27 |
+
</entry>\n
|
28 |
+
'''
|
29 |
+
|
30 |
+
# Remove space in seach query
|
31 |
+
search_query=search_query.strip().replace(" ", "+")
|
32 |
+
# Call arXiv API
|
33 |
+
arXiv_url=f'http://export.arxiv.org/api/query?search_query={search_by}:{search_query}&sortBy={sort_by}&start=0&max_results={max_results}'
|
34 |
+
with urllib.request.urlopen(arXiv_url) as url:
|
35 |
+
s = url.read()
|
36 |
+
|
37 |
+
# Parse the xml data
|
38 |
+
root = html.fromstring(s)
|
39 |
+
# Fetch relevant pdf information
|
40 |
+
pdf_entries = root.xpath("entry")
|
41 |
+
|
42 |
+
pdf_titles = []
|
43 |
+
pdf_authors = []
|
44 |
+
pdf_urls = []
|
45 |
+
pdf_categories = []
|
46 |
+
folder_names = []
|
47 |
+
pdf_citation = []
|
48 |
+
pdf_years = []
|
49 |
+
|
50 |
+
for i, pdf in enumerate(pdf_entries):
|
51 |
+
# print(pdf.xpath('updated/text()')[0][:4])
|
52 |
+
# xpath return a list with every ocurrence of the html path. Since we're getting each entry individually, we'll take the first element to avoid an unecessary list
|
53 |
+
pdf_titles.append(re.sub('[^a-zA-Z0-9]', ' ', pdf.xpath("title/text()")[0]))
|
54 |
+
pdf_authors.append(pdf.xpath("author/name/text()"))
|
55 |
+
pdf_urls.append(pdf.xpath("link[@title='pdf']/@href")[0])
|
56 |
+
pdf_categories.append(pdf.xpath("category/@term"))
|
57 |
+
folder_names.append(folder_name)
|
58 |
+
pdf_years.append(pdf.xpath('updated/text()')[0][:4])
|
59 |
+
pdf_citation.append(f"{', '.join(pdf_authors[i])}, {pdf_titles[i]}. arXiv [{pdf_categories[i][0]}] ({pdf_years[i]}), (available at {pdf_urls[i]}).")
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
pdf_info=list(zip(pdf_titles, pdf_urls, pdf_authors, pdf_categories, folder_names, pdf_citation))
|
64 |
+
|
65 |
+
# Check number of available files
|
66 |
+
# print('Requesting {max_results} files'.format(max_results=max_results))
|
67 |
+
if len(pdf_urls)<int(max_results):
|
68 |
+
matching_pdf_num=len(pdf_urls)
|
69 |
+
# print('Only {matching_pdf_num} files available'.format(matching_pdf_num=matching_pdf_num))
|
70 |
+
return pdf_info, pdf_citation
|
71 |
+
|
72 |
+
|
73 |
+
def download_pdf(pdf_info):
|
74 |
+
|
75 |
+
# if len(os.listdir(f'./{folder_name}') ) != 0:
|
76 |
+
# check folder is empty to avoid using papers from old runs:
|
77 |
+
# os.remove(f'./{folder_name}/*')
|
78 |
+
all_reference_text = []
|
79 |
+
for i,p in enumerate(stqdm(pdf_info, desc='Searching and downloading papers')):
|
80 |
+
|
81 |
+
pdf_title=p[0]
|
82 |
+
pdf_url=p[1]
|
83 |
+
pdf_author=p[2]
|
84 |
+
pdf_category=p[3]
|
85 |
+
folder_name=p[4]
|
86 |
+
pdf_citation=p[5]
|
87 |
+
r = requests.get(pdf_url, allow_redirects=True)
|
88 |
+
if i == 0:
|
89 |
+
if not os.path.exists(f'{folder_name}'):
|
90 |
+
os.makedirs(f"{folder_name}")
|
91 |
+
else:
|
92 |
+
shutil.rmtree(f'{folder_name}')
|
93 |
+
os.makedirs(f"{folder_name}")
|
94 |
+
with open(f'{folder_name}/{pdf_title}.pdf', 'wb') as currP:
|
95 |
+
currP.write(r.content)
|
96 |
+
if i == 0:
|
97 |
+
st.markdown("###### Papers found:")
|
98 |
+
st.markdown(f"{i+1}. {pdf_citation}")
|
99 |
+
time.sleep(0.15)
|
100 |
+
all_reference_text.append(f"{i+1}. {pdf_citation}\n")
|
101 |
+
if 'all_reference_text' not in st.session_state:
|
102 |
+
st.session_state.key = 'all_reference_text'
|
103 |
+
st.session_state['all_reference_text'] = ' '.join(all_reference_text)
|