File size: 4,283 Bytes
3aa4060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import random
import numpy as np

import torch

from grad.utils import fix_len_compatibility
from grad_extend.utils import parse_filelist


class TextMelSpeakerDataset(torch.utils.data.Dataset):
    def __init__(self, filelist_path):
        super().__init__()
        self.filelist = parse_filelist(filelist_path, split_char='|')
        self._filter()
        print(f'----------{len(self.filelist)}----------')

    def _filter(self):
        items_new = []
        # segment = 200
        items_min = 250  # 10ms * 250 = 2.5 S
        items_max = 500  # 10ms * 400 = 5.0 S
        for mel, vec, pit, spk in self.filelist:
            if not os.path.isfile(mel):
                continue
            if not os.path.isfile(vec):
                continue
            if not os.path.isfile(pit):
                continue
            if not os.path.isfile(spk):
                continue
            temp = np.load(pit)
            usel = int(temp.shape[0] - 1)  # useful length
            if (usel < items_min):
                continue
            if (usel >= items_max):
                usel = items_max
            items_new.append([mel, vec, pit, spk, usel])
        self.filelist = items_new

    def get_triplet(self, item):
        # print(item)
        mel = item[0]
        vec = item[1]
        pit = item[2]
        spk = item[3]
        use = item[4]

        mel = torch.load(mel)
        vec = np.load(vec)
        vec = np.repeat(vec, 2, 0)  # 320 VEC -> 160 * 2
        pit = np.load(pit)
        spk = np.load(spk)

        vec = torch.FloatTensor(vec)
        pit = torch.FloatTensor(pit)
        spk = torch.FloatTensor(spk)

        vec = vec + torch.randn_like(vec)  # Perturbation

        len_vec = vec.size()[0] - 2 # for safe
        len_pit = pit.size()[0]
        len_min = min(len_pit, len_vec)

        mel = mel[:, :len_min]
        vec = vec[:len_min, :]
        pit = pit[:len_min]

        if len_min > use:
            max_frame_start = vec.size(0) - use - 1
            frame_start = random.randint(0, max_frame_start)
            frame_end = frame_start + use

            mel = mel[:, frame_start:frame_end]
            vec = vec[frame_start:frame_end, :]
            pit = pit[frame_start:frame_end]
        # print(mel.shape)
        # print(vec.shape)
        # print(pit.shape)
        # print(spk.shape)
        return (mel, vec, pit, spk)

    def __getitem__(self, index):
        mel, vec, pit, spk = self.get_triplet(self.filelist[index])
        item = {'mel': mel, 'vec': vec, 'pit': pit, 'spk': spk}
        return item

    def __len__(self):
        return len(self.filelist)

    def sample_test_batch(self, size):
        idx = np.random.choice(range(len(self)), size=size, replace=False)
        test_batch = []
        for index in idx:
            test_batch.append(self.__getitem__(index))
        return test_batch


class TextMelSpeakerBatchCollate(object):
    # mel: [freq, length]
    # vec: [len, 256]
    # pit: [len]
    # spk: [256]
    def __call__(self, batch):
        B = len(batch)
        mel_max_length = max([item['mel'].shape[-1] for item in batch])
        max_length = fix_len_compatibility(mel_max_length)

        d_mel = batch[0]['mel'].shape[0]
        d_vec = batch[0]['vec'].shape[1]
        d_spk = batch[0]['spk'].shape[0]
        # print("d_mel", d_mel)
        # print("d_vec", d_vec)
        # print("d_spk", d_spk)
        mel = torch.zeros((B, d_mel, max_length), dtype=torch.float32)
        vec = torch.zeros((B, max_length, d_vec), dtype=torch.float32)
        pit = torch.zeros((B, max_length), dtype=torch.float32)
        spk = torch.zeros((B, d_spk), dtype=torch.float32)
        lengths = torch.LongTensor(B)

        for i, item in enumerate(batch):
            y_, x_, p_, s_ = item['mel'], item['vec'], item['pit'], item['spk']

            mel[i, :, :y_.shape[1]] = y_
            vec[i, :x_.shape[0], :] = x_
            pit[i, :p_.shape[0]] = p_
            spk[i] = s_

            lengths[i] = y_.shape[1]
        # print("lengths", lengths.shape)
        # print("vec", vec.shape)
        # print("pit", pit.shape)
        # print("spk", spk.shape)
        # print("mel", mel.shape)
        return {'lengths': lengths, 'vec': vec, 'pit': pit, 'spk': spk, 'mel': mel}