maximuspowers's picture
Update app.py
2c53668 verified
raw
history blame
5.78 kB
import json
import torch
from transformers import BertTokenizerFast, BertForTokenClassification
import gradio as gr
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = BertForTokenClassification.from_pretrained('maximuspowers/bias-detection-ner')
model.eval()
model.to('cuda' if torch.cuda.is_available() else 'cpu')
id2label = {
0: 'O',
1: 'B-STEREO',
2: 'I-STEREO',
3: 'B-GEN',
4: 'I-GEN',
5: 'B-UNFAIR',
6: 'I-UNFAIR'
}
label2id = {v: k for k, v in id2label.items()}
label_colors = {
"STEREO": "rgba(255, 0, 0, 0.2)",
"GEN": "rgba(0, 0, 255, 0.2)",
"UNFAIR": "rgba(0, 255, 0, 0.2)"
}
def post_process_entities(result):
prev_entity_type = None
for i, token_data in enumerate(result):
labels = token_data["labels"]
labels = list(set(labels))
for entity_type in ["GEN", "UNFAIR", "STEREO"]:
if f"B-{entity_type}" in labels and f"I-{entity_type}" in labels:
labels.remove(f"I-{entity_type}")
current_entity_type = None
current_label = None
for label in labels:
if label.startswith("B-") or label.startswith("I-"):
current_label = label
current_entity_type = label[2:]
if current_entity_type:
if current_label.startswith("B-") and prev_entity_type == current_entity_type:
labels.remove(current_label)
labels.append(f"I-{current_entity_type}")
if current_label.startswith("I-") and prev_entity_type != current_entity_type:
labels.remove(current_label)
labels.append(f"B-{current_entity_type}")
prev_entity_type = current_entity_type
else:
prev_entity_type = None
token_data["labels"] = labels
return result
def generate_json(sentence):
inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=128)
input_ids = inputs['input_ids'].to(model.device)
attention_mask = inputs['attention_mask'].to(model.device)
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
logits = outputs.logits
probabilities = torch.sigmoid(logits)
predicted_labels = (probabilities > 0.5).int()
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
result = []
for i, token in enumerate(tokens):
if token not in tokenizer.all_special_tokens:
label_indices = (predicted_labels[0][i] == 1).nonzero(as_tuple=False).squeeze(-1)
labels = [id2label[idx.item()] for idx in label_indices] if label_indices.numel() > 0 else ['O']
result.append({"token": token.replace("##", ""), "labels": labels})
result = post_process_entities(result)
return json.dumps(result, indent=4)
def predict_ner_tags_with_json(sentence):
json_result = generate_json(sentence)
result = json.loads(json_result)
word_row = []
stereo_row = []
gen_row = []
unfair_row = []
for token_data in result:
token = token_data["token"]
labels = token_data["labels"]
word_row.append(f"<span style='font-weight:bold;'>{token}</span>")
stereo_labels = [label[2:] for label in labels if "STEREO" in label]
stereo_row.append(
f"<span style='background:{label_colors['STEREO']}; border-radius:6px; padding:2px 5px;'>{', '.join(stereo_labels)}</span>"
if stereo_labels else "&nbsp;"
)
gen_labels = [label[2:] for label in labels if "GEN" in label]
gen_row.append(
f"<span style='background:{label_colors['GEN']}; border-radius:6px; padding:2px 5px;'>{', '.join(gen_labels)}</span>"
if gen_labels else "&nbsp;"
)
unfair_labels = [label[2:] for label in labels if "UNFAIR" in label]
unfair_row.append(
f"<span style='background:{label_colors['UNFAIR']}; border-radius:6px; padding:2px 5px;'>{', '.join(unfair_labels)}</span>"
if unfair_labels else "&nbsp;"
)
matrix_html = f"""
<table style='border-collapse:collapse; width:100%; font-family:monospace; text-align:left;'>
<tr>
<td><strong>Text Sequence</strong></td>
{''.join(f"<td>{word}</td>" for word in word_row)}
</tr>
<tr>
<td><strong>Generalizations</strong></td>
{''.join(f"<td>{cell}</td>" for cell in gen_row)}
</tr>
<tr>
<td><strong>Unfairness</strong></td>
{''.join(f"<td>{cell}</td>" for cell in unfair_row)}
</tr>
<tr>
<td><strong>Stereotypes</strong></td>
{''.join(f"<td>{cell}</td>" for cell in stereo_row)}
</tr>
</table>
"""
return f"{matrix_html}<br><pre>{json_result}</pre>"
iface = gr.Interface(
fn=predict_ner_tags_with_json,
inputs=[gr.Textbox(label="Input Sentence")],
outputs=[gr.HTML(label="Entity Matrix and JSON Output")],
title="Social Bias Named Entity Recognition (with BERT) 🕵",
description=("Enter a sentence to predict biased parts of speech tags. This model uses multi-label BertForTokenClassification, to label the entities: (GEN)eralizations, (UNFAIR)ness, and (STEREO)types. Labels follow BIO format. Try it out :)."
"<br><br>Read more about how this model was trained in this <a href='https://huggingface.co/blog/maximuspowers/bias-entity-recognition' target='_blank'>blog post</a>."
"<br>Model Page: <a href='https://huggingface.co/maximuspowers/bias-detection-ner' target='_blank'>Bias Detection NER</a>."),
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch(share=True)