File size: 5,780 Bytes
53a7262
9b562d8
 
 
 
 
9717ed1
7a0674a
 
9b562d8
 
 
 
 
 
 
 
 
 
 
2c53668
 
7cd8165
2c53668
 
 
7cd8165
 
2c53668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b562d8
 
 
 
 
 
 
 
2c53668
9b562d8
 
2c53668
9b562d8
 
 
2c53668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b562d8
2c53668
 
 
53a7262
2300f65
 
607049d
7a0674a
9b562d8
 
 
5b65826
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import json
import torch
from transformers import BertTokenizerFast, BertForTokenClassification
import gradio as gr

tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = BertForTokenClassification.from_pretrained('maximuspowers/bias-detection-ner')
model.eval()
model.to('cuda' if torch.cuda.is_available() else 'cpu')

id2label = {
    0: 'O',
    1: 'B-STEREO',
    2: 'I-STEREO',
    3: 'B-GEN',
    4: 'I-GEN',
    5: 'B-UNFAIR',
    6: 'I-UNFAIR'
}

label2id = {v: k for k, v in id2label.items()}

label_colors = {
    "STEREO": "rgba(255, 0, 0, 0.2)",
    "GEN": "rgba(0, 0, 255, 0.2)",
    "UNFAIR": "rgba(0, 255, 0, 0.2)"
}

def post_process_entities(result):
    prev_entity_type = None

    for i, token_data in enumerate(result):
        labels = token_data["labels"]

        labels = list(set(labels))
        for entity_type in ["GEN", "UNFAIR", "STEREO"]:
            if f"B-{entity_type}" in labels and f"I-{entity_type}" in labels:
                labels.remove(f"I-{entity_type}")

        current_entity_type = None
        current_label = None
        for label in labels:
            if label.startswith("B-") or label.startswith("I-"):
                current_label = label
                current_entity_type = label[2:]

        if current_entity_type:
            if current_label.startswith("B-") and prev_entity_type == current_entity_type:
                labels.remove(current_label)
                labels.append(f"I-{current_entity_type}")

            if current_label.startswith("I-") and prev_entity_type != current_entity_type:
                labels.remove(current_label)
                labels.append(f"B-{current_entity_type}")

            prev_entity_type = current_entity_type
        else:
            prev_entity_type = None 

        token_data["labels"] = labels
    return result


def generate_json(sentence):
    inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=128)
    input_ids = inputs['input_ids'].to(model.device)
    attention_mask = inputs['attention_mask'].to(model.device)

    with torch.no_grad():
        outputs = model(input_ids=input_ids, attention_mask=attention_mask)
        logits = outputs.logits
        probabilities = torch.sigmoid(logits)
        predicted_labels = (probabilities > 0.5).int()

    tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
    result = []
    for i, token in enumerate(tokens):
        if token not in tokenizer.all_special_tokens:
            label_indices = (predicted_labels[0][i] == 1).nonzero(as_tuple=False).squeeze(-1)
            labels = [id2label[idx.item()] for idx in label_indices] if label_indices.numel() > 0 else ['O']
            result.append({"token": token.replace("##", ""), "labels": labels})

    result = post_process_entities(result)

    return json.dumps(result, indent=4)

def predict_ner_tags_with_json(sentence):
    json_result = generate_json(sentence)

    result = json.loads(json_result)

    word_row = [] 
    stereo_row = []
    gen_row = []
    unfair_row = []

    for token_data in result:
        token = token_data["token"]
        labels = token_data["labels"]

        word_row.append(f"<span style='font-weight:bold;'>{token}</span>")

        stereo_labels = [label[2:] for label in labels if "STEREO" in label]
        stereo_row.append(
            f"<span style='background:{label_colors['STEREO']}; border-radius:6px; padding:2px 5px;'>{', '.join(stereo_labels)}</span>"
            if stereo_labels else "&nbsp;"
        )

        gen_labels = [label[2:] for label in labels if "GEN" in label]
        gen_row.append(
            f"<span style='background:{label_colors['GEN']}; border-radius:6px; padding:2px 5px;'>{', '.join(gen_labels)}</span>"
            if gen_labels else "&nbsp;"
        )

        unfair_labels = [label[2:] for label in labels if "UNFAIR" in label]
        unfair_row.append(
            f"<span style='background:{label_colors['UNFAIR']}; border-radius:6px; padding:2px 5px;'>{', '.join(unfair_labels)}</span>"
            if unfair_labels else "&nbsp;"
        )

    matrix_html = f"""
    <table style='border-collapse:collapse; width:100%; font-family:monospace; text-align:left;'>
        <tr>
            <td><strong>Text Sequence</strong></td>
            {''.join(f"<td>{word}</td>" for word in word_row)}
        </tr>
        <tr>
            <td><strong>Generalizations</strong></td>
            {''.join(f"<td>{cell}</td>" for cell in gen_row)}
        </tr>
        <tr>
            <td><strong>Unfairness</strong></td>
            {''.join(f"<td>{cell}</td>" for cell in unfair_row)}
        </tr>
        <tr>
            <td><strong>Stereotypes</strong></td>
            {''.join(f"<td>{cell}</td>" for cell in stereo_row)}
        </tr>
    </table>
    """

    return f"{matrix_html}<br><pre>{json_result}</pre>"

iface = gr.Interface(
    fn=predict_ner_tags_with_json,
    inputs=[gr.Textbox(label="Input Sentence")],
    outputs=[gr.HTML(label="Entity Matrix and JSON Output")],
    title="Social Bias Named Entity Recognition (with BERT) 🕵",
    description=("Enter a sentence to predict biased parts of speech tags. This model uses multi-label BertForTokenClassification, to label the entities: (GEN)eralizations, (UNFAIR)ness, and (STEREO)types. Labels follow BIO format. Try it out :)."
                 "<br><br>Read more about how this model was trained in this <a href='https://huggingface.co/blog/maximuspowers/bias-entity-recognition' target='_blank'>blog post</a>."
                 "<br>Model Page: <a href='https://huggingface.co/maximuspowers/bias-detection-ner' target='_blank'>Bias Detection NER</a>."),
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch(share=True)