File size: 3,387 Bytes
556af05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b16c76
556af05
 
 
 
 
 
 
 
 
 
 
 
 
 
6b16c76
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from transformers import AutoTokenizer, AutoModel
import torch
import numpy as np
from pydantic import BaseModel
from typing import List, Dict, Any
import time

# 创建 FastAPI 应用
app = FastAPI()

# 配置 CORS
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# 加载模型和分词器
model_name = "BAAI/bge-m3"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
model.eval()

# OpenAI 兼容的请求模型
class EmbeddingRequest(BaseModel):
    input: List[str] | str
    model: str | None = model_name
    encoding_format: str | None = "float"
    user: str | None = None

# OpenAI 兼容的响应模型
class EmbeddingResponse(BaseModel):
    object: str = "list"
    data: List[Dict[str, Any]]
    model: str
    usage: Dict[str, int]

def get_embedding(text: str) -> List[float]:
    inputs = tokenizer(
        text,
        padding=True,
        truncation=True,
        max_length=512,
        return_tensors="pt"
    )
    
    with torch.no_grad():
        outputs = model(**inputs)
        embeddings = outputs.last_hidden_state[:, 0, :].numpy()
    
    return embeddings[0].tolist()

# OpenAI 兼容的 embeddings endpoint
@app.post("/v1/embeddings", response_model=EmbeddingResponse)
async def create_embeddings(request: EmbeddingRequest):
    start_time = time.time()
    
    # 处理输入
    if isinstance(request.input, str):
        input_texts = [request.input]
    else:
        input_texts = request.input

    # 获取嵌入向量
    embeddings = []
    total_tokens = 0
    
    for text in input_texts:
        # 计算 token 数量
        tokens = tokenizer.encode(text)
        total_tokens += len(tokens)
        
        # 获取嵌入向量
        embedding = get_embedding(text)
        
        embeddings.append({
            "object": "embedding",
            "embedding": embedding,
            "index": len(embeddings)
        })

    response = EmbeddingResponse(
        data=embeddings,
        model=request.model or model_name,
        usage={
            "prompt_tokens": total_tokens,
            "total_tokens": total_tokens
        }
    )
    
    return response

# Gradio 界面
def gradio_embedding(text: str) -> Dict:
    # 创建与 OpenAI 兼容的请求
    request = EmbeddingRequest(input=text)
    
    # 调用 API 处理函数
    response = create_embeddings(request)
    
    return response.dict()

# 创建 Gradio 界面
demo = gr.Interface(
    fn=gradio_embedding,
    inputs=gr.Textbox(lines=3, placeholder="输入要进行编码的文本..."),
    outputs=gr.Json(),
    title="BGE-M3 Embeddings (OpenAI 兼容格式)",
    description="输入文本,获取其对应的嵌入向量,返回格式与 OpenAI API 兼容。",
    examples=[
        ["这是一个示例文本。"],
        ["人工智能正在改变世界。"]
    ]
)

# 启动服务
if __name__ == "__main__":
    import uvicorn
    
    # 首先启动 Gradio
    demo.queue()
    
    # 然后启动 FastAPI
    config = uvicorn.Config(
        app=app,
        host="0.0.0.0",
        port=7860,
        log_level="info"
    )
    server = uvicorn.Server(config)
    server.run()