Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from fastapi import FastAPI, HTTPException
|
3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
4 |
+
from transformers import AutoTokenizer, AutoModel
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
from pydantic import BaseModel
|
8 |
+
from typing import List, Dict, Any
|
9 |
+
import time
|
10 |
+
|
11 |
+
# 创建 FastAPI 应用
|
12 |
+
app = FastAPI()
|
13 |
+
|
14 |
+
# 配置 CORS
|
15 |
+
app.add_middleware(
|
16 |
+
CORSMiddleware,
|
17 |
+
allow_origins=["*"],
|
18 |
+
allow_credentials=True,
|
19 |
+
allow_methods=["*"],
|
20 |
+
allow_headers=["*"],
|
21 |
+
)
|
22 |
+
|
23 |
+
# 加载模型和分词器
|
24 |
+
model_name = "BAAI/bge-m3"
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
26 |
+
model = AutoModel.from_pretrained(model_name)
|
27 |
+
model.eval()
|
28 |
+
|
29 |
+
# OpenAI 兼容的请求模型
|
30 |
+
class EmbeddingRequest(BaseModel):
|
31 |
+
input: List[str] | str
|
32 |
+
model: str | None = model_name
|
33 |
+
encoding_format: str | None = "float"
|
34 |
+
user: str | None = None
|
35 |
+
|
36 |
+
# OpenAI 兼容的响应模型
|
37 |
+
class EmbeddingResponse(BaseModel):
|
38 |
+
object: str = "list"
|
39 |
+
data: List[Dict[str, Any]]
|
40 |
+
model: str
|
41 |
+
usage: Dict[str, int]
|
42 |
+
|
43 |
+
def get_embedding(text: str) -> List[float]:
|
44 |
+
inputs = tokenizer(
|
45 |
+
text,
|
46 |
+
padding=True,
|
47 |
+
truncation=True,
|
48 |
+
max_length=512,
|
49 |
+
return_tensors="pt"
|
50 |
+
)
|
51 |
+
|
52 |
+
with torch.no_grad():
|
53 |
+
outputs = model(**inputs)
|
54 |
+
embeddings = outputs.last_hidden_state[:, 0, :].numpy()
|
55 |
+
|
56 |
+
return embeddings[0].tolist()
|
57 |
+
|
58 |
+
# OpenAI 兼容的 embeddings endpoint
|
59 |
+
@app.post("/v1/embeddings", response_model=EmbeddingResponse)
|
60 |
+
async def create_embeddings(request: EmbeddingRequest):
|
61 |
+
start_time = time.time()
|
62 |
+
|
63 |
+
# 处理输入
|
64 |
+
if isinstance(request.input, str):
|
65 |
+
input_texts = [request.input]
|
66 |
+
else:
|
67 |
+
input_texts = request.input
|
68 |
+
|
69 |
+
# 获取嵌入向量
|
70 |
+
embeddings = []
|
71 |
+
total_tokens = 0
|
72 |
+
|
73 |
+
for text in input_texts:
|
74 |
+
# 计算 token 数量
|
75 |
+
tokens = tokenizer.encode(text)
|
76 |
+
total_tokens += len(tokens)
|
77 |
+
|
78 |
+
# 获取嵌入向量
|
79 |
+
embedding = get_embedding(text)
|
80 |
+
|
81 |
+
embeddings.append({
|
82 |
+
"object": "embedding",
|
83 |
+
"embedding": embedding,
|
84 |
+
"index": len(embeddings)
|
85 |
+
})
|
86 |
+
|
87 |
+
response = EmbeddingResponse(
|
88 |
+
data=embeddings,
|
89 |
+
model=request.model or model_name,
|
90 |
+
usage={
|
91 |
+
"prompt_tokens": total_tokens,
|
92 |
+
"total_tokens": total_tokens
|
93 |
+
}
|
94 |
+
)
|
95 |
+
|
96 |
+
return response
|
97 |
+
|
98 |
+
# Gradio 界面
|
99 |
+
def gradio_embedding(text: str) -> Dict:
|
100 |
+
# 创建与 OpenAI 兼容的请求
|
101 |
+
request = EmbeddingRequest(input=text)
|
102 |
+
|
103 |
+
# 调用 API 处理函数
|
104 |
+
response = create_embeddings(request)
|
105 |
+
|
106 |
+
return response.dict()
|
107 |
+
|
108 |
+
# 创建 Gradio 界面
|
109 |
+
iface = gr.Interface(
|
110 |
+
fn=gradio_embedding,
|
111 |
+
inputs=gr.Textbox(lines=3, placeholder="输入要进行编码的文本..."),
|
112 |
+
outputs=gr.Json(),
|
113 |
+
title="BGE-M3 Embeddings (OpenAI 兼容格式)",
|
114 |
+
description="输入文本,获取其对应的嵌入向量,返回格式与 OpenAI API 兼容。",
|
115 |
+
examples=[
|
116 |
+
["这是一个示例文本。"],
|
117 |
+
["人工智能正在改变世界。"]
|
118 |
+
]
|
119 |
+
)
|
120 |
+
|
121 |
+
# 挂载 Gradio 应用到 FastAPI
|
122 |
+
app = gr.mount_gradio_app(app, iface, path="/")
|
123 |
+
|
124 |
+
# 启动服务
|
125 |
+
if __name__ == "__main__":
|
126 |
+
import uvicorn
|
127 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|