mattcracker commited on
Commit
556af05
·
verified ·
1 Parent(s): 691bfaa

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +127 -0
app.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from fastapi import FastAPI, HTTPException
3
+ from fastapi.middleware.cors import CORSMiddleware
4
+ from transformers import AutoTokenizer, AutoModel
5
+ import torch
6
+ import numpy as np
7
+ from pydantic import BaseModel
8
+ from typing import List, Dict, Any
9
+ import time
10
+
11
+ # 创建 FastAPI 应用
12
+ app = FastAPI()
13
+
14
+ # 配置 CORS
15
+ app.add_middleware(
16
+ CORSMiddleware,
17
+ allow_origins=["*"],
18
+ allow_credentials=True,
19
+ allow_methods=["*"],
20
+ allow_headers=["*"],
21
+ )
22
+
23
+ # 加载模型和分词器
24
+ model_name = "BAAI/bge-m3"
25
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
26
+ model = AutoModel.from_pretrained(model_name)
27
+ model.eval()
28
+
29
+ # OpenAI 兼容的请求模型
30
+ class EmbeddingRequest(BaseModel):
31
+ input: List[str] | str
32
+ model: str | None = model_name
33
+ encoding_format: str | None = "float"
34
+ user: str | None = None
35
+
36
+ # OpenAI 兼容的响应模型
37
+ class EmbeddingResponse(BaseModel):
38
+ object: str = "list"
39
+ data: List[Dict[str, Any]]
40
+ model: str
41
+ usage: Dict[str, int]
42
+
43
+ def get_embedding(text: str) -> List[float]:
44
+ inputs = tokenizer(
45
+ text,
46
+ padding=True,
47
+ truncation=True,
48
+ max_length=512,
49
+ return_tensors="pt"
50
+ )
51
+
52
+ with torch.no_grad():
53
+ outputs = model(**inputs)
54
+ embeddings = outputs.last_hidden_state[:, 0, :].numpy()
55
+
56
+ return embeddings[0].tolist()
57
+
58
+ # OpenAI 兼容的 embeddings endpoint
59
+ @app.post("/v1/embeddings", response_model=EmbeddingResponse)
60
+ async def create_embeddings(request: EmbeddingRequest):
61
+ start_time = time.time()
62
+
63
+ # 处理输入
64
+ if isinstance(request.input, str):
65
+ input_texts = [request.input]
66
+ else:
67
+ input_texts = request.input
68
+
69
+ # 获取嵌入向量
70
+ embeddings = []
71
+ total_tokens = 0
72
+
73
+ for text in input_texts:
74
+ # 计算 token 数量
75
+ tokens = tokenizer.encode(text)
76
+ total_tokens += len(tokens)
77
+
78
+ # 获取嵌入向量
79
+ embedding = get_embedding(text)
80
+
81
+ embeddings.append({
82
+ "object": "embedding",
83
+ "embedding": embedding,
84
+ "index": len(embeddings)
85
+ })
86
+
87
+ response = EmbeddingResponse(
88
+ data=embeddings,
89
+ model=request.model or model_name,
90
+ usage={
91
+ "prompt_tokens": total_tokens,
92
+ "total_tokens": total_tokens
93
+ }
94
+ )
95
+
96
+ return response
97
+
98
+ # Gradio 界面
99
+ def gradio_embedding(text: str) -> Dict:
100
+ # 创建与 OpenAI 兼容的请求
101
+ request = EmbeddingRequest(input=text)
102
+
103
+ # 调用 API 处理函数
104
+ response = create_embeddings(request)
105
+
106
+ return response.dict()
107
+
108
+ # 创建 Gradio 界面
109
+ iface = gr.Interface(
110
+ fn=gradio_embedding,
111
+ inputs=gr.Textbox(lines=3, placeholder="输入要进行编码的文本..."),
112
+ outputs=gr.Json(),
113
+ title="BGE-M3 Embeddings (OpenAI 兼容格式)",
114
+ description="输入文本,获取其对应的嵌入向量,返回格式与 OpenAI API 兼容。",
115
+ examples=[
116
+ ["这是一个示例文本。"],
117
+ ["人工智能正在改变世界。"]
118
+ ]
119
+ )
120
+
121
+ # 挂载 Gradio 应用到 FastAPI
122
+ app = gr.mount_gradio_app(app, iface, path="/")
123
+
124
+ # 启动服务
125
+ if __name__ == "__main__":
126
+ import uvicorn
127
+ uvicorn.run(app, host="0.0.0.0", port=7860)