Spaces:
Running
Running
# /// script | |
# requires-python = ">=3.11" | |
# dependencies = [ | |
# "marimo", | |
# "duckdb==1.3.2", | |
# "pyarrow==19.0.1", | |
# "polars[pyarrow]==1.25.2", | |
# "pandas==2.2.3", | |
# "sqlglot==27.0.0", | |
# "psutil==7.0.0", | |
# "altair", | |
# ] | |
# /// | |
import marimo | |
__generated_with = "0.14.11" | |
app = marimo.App(width="medium") | |
def _(mo): | |
mo.md( | |
r""" | |
# Working with Apache Arrow | |
*By [Thomas Liang](https://github.com/thliang01)* | |
# | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
[Apache Arrow](https://arrow.apache.org/) is a multi-language toolbox for building high performance applications that process and transport large data sets. It is designed to both improve the performance of analytical algorithms and the efficiency of moving data from one system or programming language to another. | |
A critical component of Apache Arrow is its in-memory columnar format, a standardized, language-agnostic specification for representing structured, table-like datasets in-memory. This data format has a rich data type system (included nested and user-defined data types) designed to support the needs of analytic database systems, data frame libraries, and more. | |
DuckDB has native support for Apache Arrow, which is an in-memory columnar data format. This allows for efficient data transfer between DuckDB and other Arrow-compatible systems, such as Polars and Pandas (via PyArrow). | |
In this notebook, we'll explore how to: | |
- Create an Arrow table from a DuckDB query. | |
- Load an Arrow table into DuckDB. | |
- Convert between DuckDB, Arrow, and Polars/Pandas DataFrames. | |
- Combining data from multiple sources | |
- Performance benefits | |
""" | |
) | |
return | |
def _(mo): | |
mo.sql( | |
""" | |
CREATE TABLE IF NOT EXISTS users ( | |
id INTEGER, | |
name VARCHAR, | |
age INTEGER, | |
city VARCHAR | |
); | |
INSERT INTO users VALUES | |
(1, 'Alice', 30, 'New York'), | |
(2, 'Bob', 24, 'London'), | |
(3, 'Charlie', 35, 'Paris'), | |
(4, 'David', 29, 'New York'), | |
(5, 'Eve', 40, 'London'); | |
""" | |
) | |
return (users,) | |
def _(mo): | |
mo.md( | |
r""" | |
## 1. Creating an Arrow Table from a DuckDB Query | |
You can directly fetch the results of a DuckDB query as an Apache Arrow table using the `.arrow()` method on the query result. | |
""" | |
) | |
return | |
def _(mo, users): | |
users_arrow_table = mo.sql( # type: ignore | |
""" | |
SELECT * FROM users WHERE age > 30; | |
""" | |
).to_arrow() | |
return (users_arrow_table,) | |
def _(mo): | |
mo.md(r"""The `.arrow()` method returns a `pyarrow.Table` object. We can inspect its schema:""") | |
return | |
def _(users_arrow_table): | |
users_arrow_table.schema | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## 2. Loading an Arrow Table into DuckDB | |
You can also register an existing Arrow table (or a Polars/Pandas DataFrame, which uses Arrow under the hood) directly with DuckDB. This allows you to query the in-memory data without any copying, which is highly efficient. | |
""" | |
) | |
return | |
def _(pa): | |
# Create an Arrow table in Python | |
new_data = pa.table({ | |
'id': [6, 7], | |
'name': ['Fiona', 'George'], | |
'age': [22, 45], | |
'city': ['Berlin', 'Tokyo'] | |
}) | |
return (new_data,) | |
def _(mo): | |
mo.md(r"""Now, we can query this Arrow table `new_data` directly from SQL by embedding it in the query.""") | |
return | |
def _(mo, new_data): | |
mo.sql( | |
f""" | |
SELECT name, age, city | |
FROM new_data | |
WHERE age > 30; | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## 3. Convert between DuckDB, Arrow, and Polars/Pandas DataFrames. | |
The real power of DuckDB's Arrow integration comes from its seamless interoperability with data frame libraries like Polars and Pandas. Because they all share the Arrow in-memory format, conversions are often zero-copy and extremely fast. | |
""" | |
) | |
return | |
def _(mo): | |
mo.md(r"""### From DuckDB to Polars/Pandas""") | |
return | |
def _(pl, users_arrow_table): | |
# Convert the Arrow table to a Polars DataFrame | |
users_polars_df = pl.from_arrow(users_arrow_table) | |
users_polars_df | |
return | |
def _(users_arrow_table): | |
# Convert the Arrow table to a Pandas DataFrame | |
users_pandas_df = users_arrow_table.to_pandas() | |
users_pandas_df | |
return | |
def _(mo): | |
mo.md(r"""### From Polars/Pandas to DuckDB""") | |
return | |
def _(pl): | |
# Create a Polars DataFrame | |
polars_df = pl.DataFrame({ | |
"product_id": [101, 102, 103], | |
"product_name": ["Laptop", "Mouse", "Keyboard"], | |
"price": [1200.00, 25.50, 75.00] | |
}) | |
polars_df | |
return (polars_df,) | |
def _(mo): | |
mo.md(r"""Now we can query this Polars DataFrame directly in DuckDB:""") | |
return | |
def _(mo, polars_df): | |
# Query the Polars DataFrame directly in DuckDB | |
mo.sql( | |
f""" | |
SELECT product_name, price | |
FROM polars_df | |
WHERE price > 50 | |
ORDER BY price DESC; | |
""" | |
) | |
return | |
def _(mo): | |
mo.md(r"""Similarly, we can query a Pandas DataFrame:""") | |
return | |
def _(pd): | |
# Create a Pandas DataFrame | |
pandas_df = pd.DataFrame({ | |
"order_id": [1001, 1002, 1003, 1004], | |
"product_id": [101, 102, 103, 101], | |
"quantity": [1, 2, 1, 3], | |
"order_date": pd.to_datetime(['2024-01-15', '2024-01-16', '2024-01-16', '2024-01-17']) | |
}) | |
pandas_df | |
return (pandas_df,) | |
def _(mo, pandas_df): | |
# Query the Pandas DataFrame in DuckDB | |
mo.sql( | |
f""" | |
SELECT order_date, SUM(quantity) as total_quantity | |
FROM pandas_df | |
GROUP BY order_date | |
ORDER BY order_date; | |
""" | |
) | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## 4. Advanced Example: Combining Multiple Data Sources | |
One of the most powerful features is the ability to join data from different sources (DuckDB tables, Arrow tables, Polars/Pandas DataFrames) in a single query: | |
""" | |
) | |
return | |
def _(mo, pandas_df, polars_df, users): | |
# Join the DuckDB users table with the Polars products DataFrame and Pandas orders DataFrame | |
result = mo.sql( | |
f""" | |
SELECT | |
u.name as customer_name, | |
p.product_name, | |
o.quantity, | |
p.price, | |
(o.quantity * p.price) as total_amount | |
FROM users u | |
CROSS JOIN pandas_df o | |
JOIN polars_df p ON o.product_id = p.product_id | |
WHERE u.id = 1 -- Just for Alice | |
ORDER BY o.order_date; | |
""" | |
) | |
result | |
return | |
def _(mo): | |
mo.md( | |
r""" | |
## 5. Performance Benefits of Arrow Integration | |
The zero-copy integration between DuckDB and Apache Arrow delivers significant performance and memory benefits. This seamless integration enables: | |
### Key Benefits: | |
- **Memory Efficiency**: Arrow's columnar format uses 20-40% less memory than traditional DataFrames through compact columnar representation and better compression ratios | |
- **Zero-Copy Operations**: Data can be shared between DuckDB and Arrow-compatible systems (Polars, Pandas) without any data copying, eliminating redundant memory usage | |
- **Query Performance**: 2-10x faster queries compared to traditional approaches that require data copying | |
- **Larger-than-Memory Analysis**: Since both libraries support streaming query results, you can execute queries on data bigger than available memory by processing one batch at a time | |
- **Advanced Query Optimization**: DuckDB's optimizer can push down filters and projections directly into Arrow scans, reading only relevant columns and partitions | |
Let's demonstrate these benefits with concrete examples: | |
""" | |
) | |
return | |
def _(mo): | |
mo.md(r"""### Memory Efficiency Demonstration""") | |
return | |
def _(pd, pl): | |
import sys | |
import time | |
# Create identical datasets in different formats | |
n_rows = 1_000_000 | |
# Pandas DataFrame (traditional approach) | |
pandas_data = pd.DataFrame({ | |
"id": range(n_rows), | |
"value": [i * 2.5 for i in range(n_rows)], | |
"category": [f"cat_{i % 100}" for i in range(n_rows)], | |
"description": [f"This is a longer text description for row {i}" for i in range(n_rows)] | |
}) | |
# Polars DataFrame (Arrow-based) | |
polars_data = pl.DataFrame({ | |
"id": range(n_rows), | |
"value": pl.Series([i * 2.5 for i in range(n_rows)]), | |
"category": pl.Series([f"cat_{i % 100}" for i in range(n_rows)]), | |
"description": pl.Series([f"This is a longer text description for row {i}" for i in range(n_rows)]) | |
}) | |
# Get memory usage | |
pandas_memory = pandas_data.memory_usage(deep=True).sum() / 1024 / 1024 # MB | |
polars_memory = polars_data.estimated_size() / 1024 / 1024 # MB | |
print(f"Dataset size: {n_rows:,} rows") | |
print(f"Pandas memory usage: {pandas_memory:.2f} MB") | |
print(f"Polars (Arrow) memory usage: {polars_memory:.2f} MB") | |
print(f"Memory savings: {((pandas_memory - polars_memory) / pandas_memory * 100):.1f}%") | |
return pandas_data, polars_data, time | |
def _(mo): | |
mo.md(r"""### Performance Comparison: Arrow vs Non-Arrow Approaches""") | |
return | |
def _(mo): | |
mo.md(r"""Let's compare three approaches for the same analytical query:""") | |
return | |
def _(duckdb, mo, pandas_data, polars_data, time): | |
# Test query: group by category and calculate aggregations | |
query = """ | |
SELECT | |
category, | |
COUNT(*) as count, | |
AVG(value) as avg_value, | |
MIN(value) as min_value, | |
MAX(value) as max_value, | |
SUM(value) as sum_value | |
FROM data_source | |
GROUP BY category | |
ORDER BY count DESC | |
""" | |
# Approach 1: Traditional - Copy data to DuckDB table | |
start_time = time.time() | |
conn = duckdb.connect(':memory:') | |
conn.execute("CREATE TABLE pandas_table AS SELECT * FROM pandas_data") | |
result1 = conn.execute(query.replace("data_source", "pandas_table")).fetchall() | |
# conn.close() | |
approach1_time = time.time() - start_time | |
# Approach 2: Direct Pandas query (no DuckDB) | |
start_time = time.time() | |
result2 = pandas_data.groupby('category').agg({ | |
'id': 'count', | |
'value': ['mean', 'min', 'max', 'sum'] | |
}).sort_values(('id', 'count'), ascending=False) | |
approach2_time = time.time() - start_time | |
# Approach 3: Arrow-based - Zero-copy with Polars | |
start_time = time.time() | |
result3 = mo.sql( | |
f""" | |
SELECT | |
category, | |
COUNT(*) as count, | |
AVG(value) as avg_value, | |
MIN(value) as min_value, | |
MAX(value) as max_value, | |
SUM(value) as sum_value | |
FROM polars_data | |
GROUP BY category | |
ORDER BY count DESC | |
""" | |
) | |
approach3_time = time.time() - start_time | |
print("Performance Comparison:") | |
print(f"1. Traditional (copy to DuckDB): {approach1_time:.3f} seconds") | |
print(f"2. Pandas groupby: {approach2_time:.3f} seconds") | |
print(f"3. Arrow-based (zero-copy): {approach3_time:.3f} seconds") | |
print(f"\nSpeedup vs traditional: {approach1_time/approach3_time:.1f}x") | |
print(f"Speedup vs pandas: {approach2_time/approach3_time:.1f}x") | |
# Return timing variables but not the closed connection | |
return approach1_time, approach2_time, approach3_time | |
def _(mo): | |
mo.md(r"""### Visualizing the Performance Difference""") | |
return | |
def _(approach1_time, approach2_time, approach3_time, mo, pl): | |
import altair as alt | |
# Create a bar chart showing the performance comparison | |
performance_data = pl.DataFrame({ | |
"Approach": ["Traditional\n(Copy to DuckDB)", "Pandas\nGroupBy", "Arrow-based\n(Zero-copy)"], | |
"Time (seconds)": [approach1_time, approach2_time, approach3_time] | |
}) | |
# Create the Altair chart | |
chart = alt.Chart(performance_data.to_pandas()).mark_bar().encode( | |
x=alt.X("Approach", type="nominal", sort="-y"), | |
y=alt.Y("Time (seconds)", type="quantitative"), | |
color=alt.Color("Approach", type="nominal", | |
scale=alt.Scale(range=["#ff6b6b", "#ffd93d", "#6bcf7f"])) | |
).properties( | |
title="Query Performance Comparison", | |
width=400, | |
height=300 | |
) | |
# Display using marimo's altair_chart UI element | |
mo.ui.altair_chart(chart) | |
return alt, chart, performance_data | |
def _(mo): | |
mo.md(r"""### Complex Query Performance""") | |
return | |
def _(mo): | |
mo.md(r"""Let's test a more complex query with joins and window functions:""") | |
return | |
def _(mo, pl, polars_data, time): | |
# Create additional datasets for join operations | |
categories_df = pl.DataFrame({ | |
"category": [f"cat_{i}" for i in range(100)], | |
"category_group": [f"group_{i // 10}" for i in range(100)], | |
"priority": [i % 5 + 1 for i in range(100)] | |
}) | |
# Complex query with join and window functions | |
new_start_time = time.time() | |
complex_result = mo.sql( | |
f""" | |
WITH ranked_data AS ( | |
SELECT | |
d.*, | |
c.category_group, | |
c.priority, | |
ROW_NUMBER() OVER (PARTITION BY c.category_group ORDER BY d.value DESC) as rank_in_group, | |
AVG(d.value) OVER (PARTITION BY c.category_group) as group_avg_value | |
FROM polars_data d | |
JOIN categories_df c ON d.category = c.category | |
) | |
SELECT | |
category_group, | |
COUNT(DISTINCT category) as unique_categories, | |
AVG(value) as avg_value, | |
MAX(value) as max_value, | |
AVG(group_avg_value) as avg_group_value, | |
COUNT(CASE WHEN rank_in_group <= 10 THEN 1 END) as top_10_count | |
FROM ranked_data | |
GROUP BY category_group | |
ORDER BY avg_value DESC | |
""" | |
) | |
complex_query_time = time.time() - new_start_time | |
print(f"Complex query with joins and window functions completed in {complex_query_time:.3f} seconds") | |
complex_result | |
return (categories_df,) | |
def _(mo): | |
mo.md( | |
r""" | |
### Memory Efficiency During Operations | |
Let's demonstrate how Arrow's zero-copy operations save memory during data transformations: | |
""" | |
) | |
return | |
def _(polars_data, time): | |
import psutil | |
import os | |
import pyarrow.compute as pc # Add this import | |
# Get current process | |
process = psutil.Process(os.getpid()) | |
# Measure memory before operations | |
memory_before = process.memory_info().rss / 1024 / 1024 # MB | |
# Perform multiple Arrow-based operations (zero-copy) | |
latest_start_time = time.time() | |
# These operations use Arrow's zero-copy capabilities | |
arrow_table = polars_data.to_arrow() | |
arrow_sliced = arrow_table.slice(0, 100000) | |
# Use PyArrow compute functions for filtering | |
arrow_filtered = arrow_table.filter(pc.greater(arrow_table['value'], 500000)) | |
arrow_ops_time = time.time() - latest_start_time | |
memory_after_arrow = process.memory_info().rss / 1024 / 1024 # MB | |
# Compare with traditional copy-based operations | |
latest_start_time = time.time() | |
# These operations create copies | |
pandas_copy = polars_data.to_pandas() | |
pandas_sliced = pandas_copy.iloc[:100000].copy() | |
pandas_filtered = pandas_copy[pandas_copy['value'] > 500000].copy() | |
copy_ops_time = time.time() - latest_start_time | |
memory_after_copy = process.memory_info().rss / 1024 / 1024 # MB | |
print("Memory Usage Comparison:") | |
print(f"Initial memory: {memory_before:.2f} MB") | |
print(f"After Arrow operations: {memory_after_arrow:.2f} MB (diff: +{memory_after_arrow - memory_before:.2f} MB)") | |
print(f"After copy operations: {memory_after_copy:.2f} MB (diff: +{memory_after_copy - memory_before:.2f} MB)") | |
print(f"\nTime comparison:") | |
print(f"Arrow operations: {arrow_ops_time:.3f} seconds") | |
print(f"Copy operations: {copy_ops_time:.3f} seconds") | |
print(f"Speedup: {copy_ops_time/arrow_ops_time:.1f}x") | |
return pc | |
def _(mo): | |
mo.md( | |
r""" | |
## Summary | |
In this notebook, we've explored: | |
1. **Creating Arrow tables from DuckDB queries** using `.to_arrow()` | |
2. **Loading Arrow tables into DuckDB** and querying them directly | |
3. **Converting between DuckDB, Arrow, Polars, and Pandas** with zero-copy operations | |
4. **Combining data from multiple sources** in a single SQL query | |
5. **Performance and memory benefits** including: | |
- **Memory efficiency**: Arrow format uses 20-40% less memory than traditional DataFrames | |
- **Query performance**: 2-10x faster queries through zero-copy operations | |
- **Reduced memory overhead**: Operations on Arrow data avoid creating copies | |
- **Better scalability**: Can handle larger datasets within the same memory constraints | |
The seamless integration between DuckDB and Arrow-compatible systems makes it easy to work with data across different tools while maintaining high performance and memory efficiency. | |
""" | |
) | |
return | |
def _(): | |
import marimo as mo | |
import pyarrow as pa | |
import polars as pl | |
import pandas as pd | |
import duckdb | |
import sqlglot | |
return duckdb, mo, pa, pd, pl | |
if __name__ == "__main__": | |
app.run() | |