File size: 18,219 Bytes
ef43da6
 
 
 
b85ef90
ef43da6
 
 
b85ef90
 
 
ef43da6
 
 
 
 
b85ef90
ef43da6
 
b85ef90
ef43da6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d24bcb
 
ef43da6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b85ef90
ef43da6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b85ef90
ef43da6
 
 
 
 
 
 
 
 
 
b85ef90
ef43da6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b85ef90
ef43da6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d24bcb
 
 
 
 
ef43da6
5d24bcb
 
 
 
ef43da6
 
5d24bcb
 
b85ef90
5d24bcb
ef43da6
 
 
5d24bcb
 
 
 
b85ef90
5d24bcb
 
 
 
 
 
 
b85ef90
5d24bcb
 
 
 
b85ef90
5d24bcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b85ef90
5d24bcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b85ef90
5d24bcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b85ef90
5d24bcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b85ef90
5d24bcb
 
 
 
 
 
b85ef90
 
 
 
 
5d24bcb
b85ef90
 
 
 
 
 
5d24bcb
 
 
 
 
b85ef90
5d24bcb
 
b85ef90
5d24bcb
 
 
 
b85ef90
 
5d24bcb
b85ef90
 
 
 
 
 
 
 
 
 
5d24bcb
b85ef90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d24bcb
 
 
b85ef90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d24bcb
b85ef90
 
 
 
 
5d24bcb
b85ef90
 
 
 
 
 
 
 
 
 
 
5d24bcb
 
 
 
 
 
b85ef90
 
 
5d24bcb
 
 
 
b85ef90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d24bcb
b85ef90
 
 
 
 
 
 
 
 
 
 
5d24bcb
b85ef90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d24bcb
 
 
 
 
 
b85ef90
5d24bcb
b85ef90
 
 
 
5d24bcb
 
b85ef90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d24bcb
 
ef43da6
 
 
 
5d24bcb
ef43da6
 
 
b85ef90
 
 
ef43da6
 
 
b85ef90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
# /// script
# requires-python = ">=3.11"
# dependencies = [
#     "marimo",
#     "duckdb==1.3.2",
#     "pyarrow==19.0.1",
#     "polars[pyarrow]==1.25.2",
#     "pandas==2.2.3",
#     "sqlglot==27.0.0",
#     "psutil==7.0.0",
#     "altair",
# ]
# ///

import marimo

__generated_with = "0.14.11"
app = marimo.App(width="medium")


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
    # Working with Apache Arrow
    *By [Thomas Liang](https://github.com/thliang01)*
    #
    """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        [Apache Arrow](https://arrow.apache.org/) is a multi-language toolbox for building high performance applications that process and transport large data sets. It is designed to both improve the performance of analytical algorithms and the efficiency of moving data from one system or programming language to another.

        A critical component of Apache Arrow is its in-memory columnar format, a standardized, language-agnostic specification for representing structured, table-like datasets in-memory. This data format has a rich data type system (included nested and user-defined data types) designed to support the needs of analytic database systems, data frame libraries, and more.

        DuckDB has native support for Apache Arrow, which is an in-memory columnar data format. This allows for efficient data transfer between DuckDB and other Arrow-compatible systems, such as Polars and Pandas (via PyArrow).

        In this notebook, we'll explore how to:

        - Create an Arrow table from a DuckDB query.
        - Load an Arrow table into DuckDB.
        - Convert between DuckDB, Arrow, and Polars/Pandas DataFrames.
        - Combining data from multiple sources
        - Performance benefits
        """
    )
    return


@app.cell
def _(mo):
    mo.sql(
        """
        CREATE TABLE IF NOT EXISTS users (
            id INTEGER,
            name VARCHAR,
            age INTEGER,
            city VARCHAR
        );

        INSERT INTO users VALUES
            (1, 'Alice', 30, 'New York'),
            (2, 'Bob', 24, 'London'),
            (3, 'Charlie', 35, 'Paris'),
            (4, 'David', 29, 'New York'),
            (5, 'Eve', 40, 'London');
        """
    )
    return (users,)


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## 1. Creating an Arrow Table from a DuckDB Query

        You can directly fetch the results of a DuckDB query as an Apache Arrow table using the `.arrow()` method on the query result.
        """
    )
    return


@app.cell
def _(mo, users):
    users_arrow_table = mo.sql(  # type: ignore
        """
        SELECT * FROM users WHERE age > 30;
        """
    ).to_arrow()
    return (users_arrow_table,)


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""The `.arrow()` method returns a `pyarrow.Table` object. We can inspect its schema:""")
    return


@app.cell
def _(users_arrow_table):
    users_arrow_table.schema
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## 2. Loading an Arrow Table into DuckDB

        You can also register an existing Arrow table (or a Polars/Pandas DataFrame, which uses Arrow under the hood) directly with DuckDB. This allows you to query the in-memory data without any copying, which is highly efficient.
        """
    )
    return


@app.cell
def _(pa):
    # Create an Arrow table in Python
    new_data = pa.table({
        'id': [6, 7],
        'name': ['Fiona', 'George'],
        'age': [22, 45],
        'city': ['Berlin', 'Tokyo']
    })
    return (new_data,)


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""Now, we can query this Arrow table `new_data` directly from SQL by embedding it in the query.""")
    return


@app.cell
def _(mo, new_data):
    mo.sql(
        f"""
        SELECT name, age, city
        FROM new_data
        WHERE age > 30;
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## 3. Convert between DuckDB, Arrow, and Polars/Pandas DataFrames.

        The real power of DuckDB's Arrow integration comes from its seamless interoperability with data frame libraries like Polars and Pandas. Because they all share the Arrow in-memory format, conversions are often zero-copy and extremely fast.
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""### From DuckDB to Polars/Pandas""")
    return


@app.cell
def _(pl, users_arrow_table):
    # Convert the Arrow table to a Polars DataFrame
    users_polars_df = pl.from_arrow(users_arrow_table)
    users_polars_df
    return


@app.cell
def _(users_arrow_table):
    # Convert the Arrow table to a Pandas DataFrame
    users_pandas_df = users_arrow_table.to_pandas()
    users_pandas_df
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""### From Polars/Pandas to DuckDB""")
    return


@app.cell
def _(pl):
    # Create a Polars DataFrame
    polars_df = pl.DataFrame({
        "product_id": [101, 102, 103],
        "product_name": ["Laptop", "Mouse", "Keyboard"],
        "price": [1200.00, 25.50, 75.00]
    })
    polars_df
    return (polars_df,)


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""Now we can query this Polars DataFrame directly in DuckDB:""")
    return


@app.cell
def _(mo, polars_df):
    # Query the Polars DataFrame directly in DuckDB
    mo.sql(
        f"""
        SELECT product_name, price
        FROM polars_df
        WHERE price > 50
        ORDER BY price DESC;
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""Similarly, we can query a Pandas DataFrame:""")
    return


@app.cell
def _(pd):
    # Create a Pandas DataFrame
    pandas_df = pd.DataFrame({
        "order_id": [1001, 1002, 1003, 1004],
        "product_id": [101, 102, 103, 101],
        "quantity": [1, 2, 1, 3],
        "order_date": pd.to_datetime(['2024-01-15', '2024-01-16', '2024-01-16', '2024-01-17'])
    })
    pandas_df
    return (pandas_df,)


@app.cell
def _(mo, pandas_df):
    # Query the Pandas DataFrame in DuckDB
    mo.sql(
        f"""
        SELECT order_date, SUM(quantity) as total_quantity
        FROM pandas_df
        GROUP BY order_date
        ORDER BY order_date;
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## 4. Advanced Example: Combining Multiple Data Sources

        One of the most powerful features is the ability to join data from different sources (DuckDB tables, Arrow tables, Polars/Pandas DataFrames) in a single query:
        """
    )
    return


@app.cell
def _(mo, pandas_df, polars_df, users):
    # Join the DuckDB users table with the Polars products DataFrame and Pandas orders DataFrame
    result = mo.sql(
        f"""
        SELECT 
            u.name as customer_name,
            p.product_name,
            o.quantity,
            p.price,
            (o.quantity * p.price) as total_amount
        FROM users u
        CROSS JOIN pandas_df o
        JOIN polars_df p ON o.product_id = p.product_id
        WHERE u.id = 1  -- Just for Alice
        ORDER BY o.order_date;
        """
    )
    result
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## 5. Performance Benefits of Arrow Integration

        The zero-copy integration between DuckDB and Apache Arrow delivers significant performance and memory benefits. This seamless integration enables:

        ### Key Benefits:

        - **Memory Efficiency**: Arrow's columnar format uses 20-40% less memory than traditional DataFrames through compact columnar representation and better compression ratios
        - **Zero-Copy Operations**: Data can be shared between DuckDB and Arrow-compatible systems (Polars, Pandas) without any data copying, eliminating redundant memory usage 
        - **Query Performance**: 2-10x faster queries compared to traditional approaches that require data copying
        - **Larger-than-Memory Analysis**: Since both libraries support streaming query results, you can execute queries on data bigger than available memory by processing one batch at a time 
        - **Advanced Query Optimization**: DuckDB's optimizer can push down filters and projections directly into Arrow scans, reading only relevant columns and partitions 
        Let's demonstrate these benefits with concrete examples:
        """
    )
    return



@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""### Memory Efficiency Demonstration""")
    return


@app.cell
def _(pd, pl):
    import sys
    import time

    # Create identical datasets in different formats
    n_rows = 1_000_000

    # Pandas DataFrame (traditional approach)
    pandas_data = pd.DataFrame({
        "id": range(n_rows),
        "value": [i * 2.5 for i in range(n_rows)],
        "category": [f"cat_{i % 100}" for i in range(n_rows)],
        "description": [f"This is a longer text description for row {i}" for i in range(n_rows)]
    })

    # Polars DataFrame (Arrow-based)
    polars_data = pl.DataFrame({
        "id": range(n_rows),
        "value": pl.Series([i * 2.5 for i in range(n_rows)]),
        "category": pl.Series([f"cat_{i % 100}" for i in range(n_rows)]),
        "description": pl.Series([f"This is a longer text description for row {i}" for i in range(n_rows)])
    })

    # Get memory usage
    pandas_memory = pandas_data.memory_usage(deep=True).sum() / 1024 / 1024  # MB
    polars_memory = polars_data.estimated_size() / 1024 / 1024  # MB

    print(f"Dataset size: {n_rows:,} rows")
    print(f"Pandas memory usage: {pandas_memory:.2f} MB")
    print(f"Polars (Arrow) memory usage: {polars_memory:.2f} MB")
    print(f"Memory savings: {((pandas_memory - polars_memory) / pandas_memory * 100):.1f}%")
    return pandas_data, polars_data, time


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""### Performance Comparison: Arrow vs Non-Arrow Approaches""")
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""Let's compare three approaches for the same analytical query:""")
    return


@app.cell
def _(duckdb, mo, pandas_data, polars_data, time):
    # Test query: group by category and calculate aggregations
    query = """
    SELECT 
        category,
        COUNT(*) as count,
        AVG(value) as avg_value,
        MIN(value) as min_value,
        MAX(value) as max_value,
        SUM(value) as sum_value
    FROM data_source
    GROUP BY category
    ORDER BY count DESC
    """

    # Approach 1: Traditional - Copy data to DuckDB table
    start_time = time.time()
    conn = duckdb.connect(':memory:')
    conn.execute("CREATE TABLE pandas_table AS SELECT * FROM pandas_data")
    result1 = conn.execute(query.replace("data_source", "pandas_table")).fetchall()
    # conn.close()
    approach1_time = time.time() - start_time

    # Approach 2: Direct Pandas query (no DuckDB)
    start_time = time.time()
    result2 = pandas_data.groupby('category').agg({
        'id': 'count',
        'value': ['mean', 'min', 'max', 'sum']
    }).sort_values(('id', 'count'), ascending=False)
    approach2_time = time.time() - start_time

    # Approach 3: Arrow-based - Zero-copy with Polars
    start_time = time.time()
    result3 = mo.sql(
        f"""
        SELECT 
            category,
            COUNT(*) as count,
            AVG(value) as avg_value,
            MIN(value) as min_value,
            MAX(value) as max_value,
            SUM(value) as sum_value
        FROM polars_data
        GROUP BY category
        ORDER BY count DESC
        """
    )
    approach3_time = time.time() - start_time

    print("Performance Comparison:")
    print(f"1. Traditional (copy to DuckDB): {approach1_time:.3f} seconds")
    print(f"2. Pandas groupby: {approach2_time:.3f} seconds")
    print(f"3. Arrow-based (zero-copy): {approach3_time:.3f} seconds")
    print(f"\nSpeedup vs traditional: {approach1_time/approach3_time:.1f}x")
    print(f"Speedup vs pandas: {approach2_time/approach3_time:.1f}x")

    # Return timing variables but not the closed connection
    return approach1_time, approach2_time, approach3_time


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""### Visualizing the Performance Difference""")
    return


@app.cell
def _(approach1_time, approach2_time, approach3_time, mo, pl):
    import altair as alt
    
    # Create a bar chart showing the performance comparison
    performance_data = pl.DataFrame({
        "Approach": ["Traditional\n(Copy to DuckDB)", "Pandas\nGroupBy", "Arrow-based\n(Zero-copy)"],
        "Time (seconds)": [approach1_time, approach2_time, approach3_time]
    })

    # Create the Altair chart
    chart = alt.Chart(performance_data.to_pandas()).mark_bar().encode(
        x=alt.X("Approach", type="nominal", sort="-y"),
        y=alt.Y("Time (seconds)", type="quantitative"),
        color=alt.Color("Approach", type="nominal", 
                       scale=alt.Scale(range=["#ff6b6b", "#ffd93d", "#6bcf7f"]))
    ).properties(
        title="Query Performance Comparison",
        width=400,
        height=300
    )
    
    # Display using marimo's altair_chart UI element
    mo.ui.altair_chart(chart)
    return alt, chart, performance_data



@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""### Complex Query Performance""")
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""Let's test a more complex query with joins and window functions:""")
    return


@app.cell
def _(mo, pl, polars_data, time):
    # Create additional datasets for join operations
    categories_df = pl.DataFrame({
        "category": [f"cat_{i}" for i in range(100)],
        "category_group": [f"group_{i // 10}" for i in range(100)],
        "priority": [i % 5 + 1 for i in range(100)]
    })

    # Complex query with join and window functions
    new_start_time = time.time()

    complex_result = mo.sql(
        f"""
        WITH ranked_data AS (
            SELECT 
                d.*,
                c.category_group,
                c.priority,
                ROW_NUMBER() OVER (PARTITION BY c.category_group ORDER BY d.value DESC) as rank_in_group,
                AVG(d.value) OVER (PARTITION BY c.category_group) as group_avg_value
            FROM polars_data d
            JOIN categories_df c ON d.category = c.category
        )
        SELECT 
            category_group,
            COUNT(DISTINCT category) as unique_categories,
            AVG(value) as avg_value,
            MAX(value) as max_value,
            AVG(group_avg_value) as avg_group_value,
            COUNT(CASE WHEN rank_in_group <= 10 THEN 1 END) as top_10_count
        FROM ranked_data
        GROUP BY category_group
        ORDER BY avg_value DESC
        """
    )

    complex_query_time = time.time() - new_start_time
    print(f"Complex query with joins and window functions completed in {complex_query_time:.3f} seconds")

    complex_result
    return (categories_df,)


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
    ### Memory Efficiency During Operations

    Let's demonstrate how Arrow's zero-copy operations save memory during data transformations:
    """
    )
    return


@app.cell
def _(polars_data, time):
    import psutil
    import os
    import pyarrow.compute as pc  # Add this import

    # Get current process
    process = psutil.Process(os.getpid())

    # Measure memory before operations
    memory_before = process.memory_info().rss / 1024 / 1024  # MB

    # Perform multiple Arrow-based operations (zero-copy)
    latest_start_time = time.time()

    # These operations use Arrow's zero-copy capabilities
    arrow_table = polars_data.to_arrow()
    arrow_sliced = arrow_table.slice(0, 100000)
    # Use PyArrow compute functions for filtering
    arrow_filtered = arrow_table.filter(pc.greater(arrow_table['value'], 500000))

    arrow_ops_time = time.time() - latest_start_time
    memory_after_arrow = process.memory_info().rss / 1024 / 1024  # MB

    # Compare with traditional copy-based operations
    latest_start_time = time.time()

    # These operations create copies
    pandas_copy = polars_data.to_pandas()
    pandas_sliced = pandas_copy.iloc[:100000].copy()
    pandas_filtered = pandas_copy[pandas_copy['value'] > 500000].copy()

    copy_ops_time = time.time() - latest_start_time
    memory_after_copy = process.memory_info().rss / 1024 / 1024  # MB

    print("Memory Usage Comparison:")
    print(f"Initial memory: {memory_before:.2f} MB")
    print(f"After Arrow operations: {memory_after_arrow:.2f} MB (diff: +{memory_after_arrow - memory_before:.2f} MB)")
    print(f"After copy operations: {memory_after_copy:.2f} MB (diff: +{memory_after_copy - memory_before:.2f} MB)")
    print(f"\nTime comparison:")
    print(f"Arrow operations: {arrow_ops_time:.3f} seconds")
    print(f"Copy operations: {copy_ops_time:.3f} seconds")
    print(f"Speedup: {copy_ops_time/arrow_ops_time:.1f}x")
    return pc



@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
    ## Summary

    In this notebook, we've explored:

    1. **Creating Arrow tables from DuckDB queries** using `.to_arrow()`
    2. **Loading Arrow tables into DuckDB** and querying them directly
    3. **Converting between DuckDB, Arrow, Polars, and Pandas** with zero-copy operations
    4. **Combining data from multiple sources** in a single SQL query
    5. **Performance and memory benefits** including:
        - **Memory efficiency**: Arrow format uses 20-40% less memory than traditional DataFrames
        - **Query performance**: 2-10x faster queries through zero-copy operations
        - **Reduced memory overhead**: Operations on Arrow data avoid creating copies
        - **Better scalability**: Can handle larger datasets within the same memory constraints

    The seamless integration between DuckDB and Arrow-compatible systems makes it easy to work with data across different tools while maintaining high performance and memory efficiency.
    """
    )
    return


@app.cell
def _():
    import marimo as mo
    import pyarrow as pa
    import polars as pl
    import pandas as pd
    import duckdb
    import sqlglot
    return duckdb, mo, pa, pd, pl


if __name__ == "__main__":
    app.run()