Marcus Vinicius Zerbini Canhaço
feat: versão inicial limpa
8fb6272
raw
history blame
7.29 kB
from abc import ABC, abstractmethod
import gc
import torch
import logging
from typing import Dict, Any, Optional, List, Tuple
import os
import cv2
from PIL import Image
import time
logger = logging.getLogger(__name__)
class BaseCache:
"""Cache base para armazenar resultados de detecção."""
def __init__(self, max_size: int = 1000):
self.cache = {}
self.max_size = max_size
self.hits = 0
self.misses = 0
self.last_access = {}
def get(self, key: str) -> Optional[Dict]:
try:
if key in self.cache:
self.hits += 1
self.last_access[key] = time.time()
return self.cache[key]
self.misses += 1
return None
except Exception as e:
logger.error(f"Erro ao recuperar do cache: {str(e)}")
return None
def put(self, key: str, results: Dict):
try:
if len(self.cache) >= self.max_size:
oldest_key = min(self.last_access.items(), key=lambda x: x[1])[0]
del self.cache[oldest_key]
del self.last_access[oldest_key]
self.cache[key] = results
self.last_access[key] = time.time()
except Exception as e:
logger.error(f"Erro ao armazenar no cache: {str(e)}")
def clear(self):
"""Limpa o cache e libera memória."""
self.cache.clear()
self.last_access.clear()
gc.collect()
def get_stats(self) -> dict:
total = self.hits + self.misses
hit_rate = (self.hits / total) * 100 if total > 0 else 0
return {
"cache_size": len(self.cache),
"max_size": self.max_size,
"hits": self.hits,
"misses": self.misses,
"hit_rate": f"{hit_rate:.2f}%",
"memory_usage": sum(sys.getsizeof(v) for v in self.cache.values())
}
class BaseDetector(ABC):
"""Classe base abstrata para detectores de objetos perigosos."""
def __init__(self):
self._initialized = False
self.device = None
self.owlv2_model = None
self.owlv2_processor = None
self.text_queries = None
self.processed_text = None
self.threshold = 0.3
self.result_cache = None
@abstractmethod
def _initialize(self):
"""Inicializa o modelo e o processador."""
pass
@abstractmethod
def _get_best_device(self):
"""Retorna o melhor dispositivo disponível."""
pass
def initialize(self):
"""Inicializa o detector se ainda não estiver inicializado."""
if not self._initialized:
self._initialize()
def extract_frames(self, video_path: str, fps: int = None, resolution: int = 640) -> List:
"""Extrai frames do vídeo com taxa e resolução especificadas."""
try:
if not os.path.exists(video_path):
logger.error(f"Arquivo de vídeo não encontrado: {video_path}")
return []
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
logger.error("Erro ao abrir o vídeo")
return []
original_fps = cap.get(cv2.CAP_PROP_FPS)
target_fps = fps if fps else min(2, original_fps)
frame_interval = int(original_fps / target_fps)
frames = []
frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
if frame_count % frame_interval == 0:
if resolution:
height, width = frame.shape[:2]
scale = resolution / max(height, width)
if scale < 1:
new_width = int(width * scale)
new_height = int(height * scale)
frame = cv2.resize(frame, (new_width, new_height))
frames.append(frame)
frame_count += 1
cap.release()
return frames
except Exception as e:
logger.error(f"Erro ao extrair frames: {str(e)}")
return []
@abstractmethod
def detect_objects(self, image: Image.Image, threshold: float = 0.3) -> List[Dict]:
"""Detecta objetos em uma imagem."""
pass
@abstractmethod
def process_video(self, video_path: str, fps: int = None, threshold: float = 0.3, resolution: int = 640) -> Tuple[str, Dict]:
"""Processa um vídeo para detecção de objetos."""
pass
def clean_memory(self):
"""Limpa memória não utilizada."""
try:
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.debug("Cache GPU limpo")
gc.collect()
logger.debug("Garbage collector executado")
except Exception as e:
logger.error(f"Erro ao limpar memória: {str(e)}")
def _get_detection_queries(self) -> List[str]:
"""Retorna as queries otimizadas para detecção de objetos perigosos."""
firearms = ["handgun", "rifle", "shotgun", "machine gun", "firearm"]
edged_weapons = ["knife", "dagger", "machete", "box cutter", "sword"]
ranged_weapons = ["crossbow", "bow"]
sharp_objects = ["blade", "razor", "glass shard", "screwdriver", "metallic pointed object"]
firearm_contexts = ["close-up", "clear view", "detailed"]
edged_contexts = ["close-up", "clear view", "detailed", "metallic", "sharp"]
ranged_contexts = ["close-up", "clear view", "detailed"]
sharp_contexts = ["close-up", "clear view", "detailed", "sharp"]
queries = []
for weapon in firearms:
queries.append(f"a photo of a {weapon}")
for context in firearm_contexts:
queries.append(f"a photo of a {context} {weapon}")
for weapon in edged_weapons:
queries.append(f"a photo of a {weapon}")
for context in edged_contexts:
queries.append(f"a photo of a {context} {weapon}")
for weapon in ranged_weapons:
queries.append(f"a photo of a {weapon}")
for context in ranged_contexts:
queries.append(f"a photo of a {context} {weapon}")
for weapon in sharp_objects:
queries.append(f"a photo of a {weapon}")
for context in sharp_contexts:
queries.append(f"a photo of a {context} {weapon}")
queries = sorted(list(set(queries)))
logger.info(f"Total de queries otimizadas geradas: {len(queries)}")
return queries
@abstractmethod
def _apply_nms(self, detections: List[Dict], iou_threshold: float = 0.5) -> List[Dict]:
"""Aplica Non-Maximum Suppression nas detecções."""
pass
@abstractmethod
def _preprocess_image(self, image: Any) -> Any:
"""Pré-processa a imagem para o formato adequado."""
pass