File size: 7,289 Bytes
8fb6272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from abc import ABC, abstractmethod
import gc
import torch
import logging
from typing import Dict, Any, Optional, List, Tuple
import os
import cv2
from PIL import Image
import time

logger = logging.getLogger(__name__)

class BaseCache:
    """Cache base para armazenar resultados de detecção."""
    def __init__(self, max_size: int = 1000):
        self.cache = {}
        self.max_size = max_size
        self.hits = 0
        self.misses = 0
        self.last_access = {}

    def get(self, key: str) -> Optional[Dict]:
        try:
            if key in self.cache:
                self.hits += 1
                self.last_access[key] = time.time()
                return self.cache[key]
            self.misses += 1
            return None
        except Exception as e:
            logger.error(f"Erro ao recuperar do cache: {str(e)}")
            return None

    def put(self, key: str, results: Dict):
        try:
            if len(self.cache) >= self.max_size:
                oldest_key = min(self.last_access.items(), key=lambda x: x[1])[0]
                del self.cache[oldest_key]
                del self.last_access[oldest_key]
            self.cache[key] = results
            self.last_access[key] = time.time()
        except Exception as e:
            logger.error(f"Erro ao armazenar no cache: {str(e)}")

    def clear(self):
        """Limpa o cache e libera memória."""
        self.cache.clear()
        self.last_access.clear()
        gc.collect()

    def get_stats(self) -> dict:
        total = self.hits + self.misses
        hit_rate = (self.hits / total) * 100 if total > 0 else 0
        return {
            "cache_size": len(self.cache),
            "max_size": self.max_size,
            "hits": self.hits,
            "misses": self.misses,
            "hit_rate": f"{hit_rate:.2f}%",
            "memory_usage": sum(sys.getsizeof(v) for v in self.cache.values())
        }

class BaseDetector(ABC):
    """Classe base abstrata para detectores de objetos perigosos."""
    def __init__(self):
        self._initialized = False
        self.device = None
        self.owlv2_model = None
        self.owlv2_processor = None
        self.text_queries = None
        self.processed_text = None
        self.threshold = 0.3
        self.result_cache = None
        
    @abstractmethod
    def _initialize(self):
        """Inicializa o modelo e o processador."""
        pass
        
    @abstractmethod
    def _get_best_device(self):
        """Retorna o melhor dispositivo disponível."""
        pass
        
    def initialize(self):
        """Inicializa o detector se ainda não estiver inicializado."""
        if not self._initialized:
            self._initialize()
            
    def extract_frames(self, video_path: str, fps: int = None, resolution: int = 640) -> List:
        """Extrai frames do vídeo com taxa e resolução especificadas."""
        try:
            if not os.path.exists(video_path):
                logger.error(f"Arquivo de vídeo não encontrado: {video_path}")
                return []
                
            cap = cv2.VideoCapture(video_path)
            if not cap.isOpened():
                logger.error("Erro ao abrir o vídeo")
                return []
                
            original_fps = cap.get(cv2.CAP_PROP_FPS)
            target_fps = fps if fps else min(2, original_fps)
            frame_interval = int(original_fps / target_fps)
            
            frames = []
            frame_count = 0
            
            while True:
                ret, frame = cap.read()
                if not ret:
                    break
                    
                if frame_count % frame_interval == 0:
                    if resolution:
                        height, width = frame.shape[:2]
                        scale = resolution / max(height, width)
                        if scale < 1:
                            new_width = int(width * scale)
                            new_height = int(height * scale)
                            frame = cv2.resize(frame, (new_width, new_height))
                    frames.append(frame)
                    
                frame_count += 1
                
            cap.release()
            return frames
            
        except Exception as e:
            logger.error(f"Erro ao extrair frames: {str(e)}")
            return []
            
    @abstractmethod
    def detect_objects(self, image: Image.Image, threshold: float = 0.3) -> List[Dict]:
        """Detecta objetos em uma imagem."""
        pass
        
    @abstractmethod
    def process_video(self, video_path: str, fps: int = None, threshold: float = 0.3, resolution: int = 640) -> Tuple[str, Dict]:
        """Processa um vídeo para detecção de objetos."""
        pass

    def clean_memory(self):
        """Limpa memória não utilizada."""
        try:
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
                logger.debug("Cache GPU limpo")
            gc.collect()
            logger.debug("Garbage collector executado")
        except Exception as e:
            logger.error(f"Erro ao limpar memória: {str(e)}")

    def _get_detection_queries(self) -> List[str]:
        """Retorna as queries otimizadas para detecção de objetos perigosos."""
        firearms = ["handgun", "rifle", "shotgun", "machine gun", "firearm"]
        edged_weapons = ["knife", "dagger", "machete", "box cutter", "sword"]
        ranged_weapons = ["crossbow", "bow"]
        sharp_objects = ["blade", "razor", "glass shard", "screwdriver", "metallic pointed object"]
        
        firearm_contexts = ["close-up", "clear view", "detailed"]
        edged_contexts = ["close-up", "clear view", "detailed", "metallic", "sharp"]
        ranged_contexts = ["close-up", "clear view", "detailed"]
        sharp_contexts = ["close-up", "clear view", "detailed", "sharp"]
        
        queries = []
        
        for weapon in firearms:
            queries.append(f"a photo of a {weapon}")
            for context in firearm_contexts:
                queries.append(f"a photo of a {context} {weapon}")
        
        for weapon in edged_weapons:
            queries.append(f"a photo of a {weapon}")
            for context in edged_contexts:
                queries.append(f"a photo of a {context} {weapon}")
        
        for weapon in ranged_weapons:
            queries.append(f"a photo of a {weapon}")
            for context in ranged_contexts:
                queries.append(f"a photo of a {context} {weapon}")
        
        for weapon in sharp_objects:
            queries.append(f"a photo of a {weapon}")
            for context in sharp_contexts:
                queries.append(f"a photo of a {context} {weapon}")
        
        queries = sorted(list(set(queries)))
        logger.info(f"Total de queries otimizadas geradas: {len(queries)}")
        return queries

    @abstractmethod
    def _apply_nms(self, detections: List[Dict], iou_threshold: float = 0.5) -> List[Dict]:
        """Aplica Non-Maximum Suppression nas detecções."""
        pass

    @abstractmethod
    def _preprocess_image(self, image: Any) -> Any:
        """Pré-processa a imagem para o formato adequado."""
        pass