hocherie
add files
4187c6f
raw
history blame
25 kB
"""Script to get BEV images from a dataset of locations.
Example usage:
python3.9 -m mia.bev.get_bev
"""
import argparse
import multiprocessing as mp
from pathlib import Path
import io
import os
import requests
import contextlib
import traceback
import colour
import numpy as np
from matplotlib import pyplot as plt
import pandas as pd
import geopandas as gpd
import torch.nn as nn
import torch
from tqdm import tqdm
from filelock import FileLock
from math import sqrt, ceil
import svgwrite
import cairosvg
from PIL import Image
from xml.etree import ElementTree as ET
from pyproj.transformer import Transformer
from shapely.geometry import box
from omegaconf import OmegaConf
import urllib3
from map_machine.map_configuration import MapConfiguration
from map_machine.scheme import Scheme
from map_machine.geometry.boundary_box import BoundaryBox
from map_machine.osm.osm_getter import NetworkError
from map_machine.osm.osm_reader import OSMData
from map_machine.geometry.flinger import MercatorFlinger
from map_machine.pictogram.icon import ShapeExtractor
from map_machine.workspace import workspace
from map_machine.mapper import Map
from map_machine.constructor import Constructor
from .. import logger
from .image import center_crop_to_size, center_pad
# MUST match colors from map rendering style
COLORS = {
"road": "#000",
"crossing": "#F00",
"explicit_pedestrian": "#FF0",
"park": "#0F0",
"building": "#F0F",
"water": "#00F",
"terrain": "#0FF",
"parking": "#AAA",
"train": "#555"
}
# While the color mapping above must match what is in the
# rendering style, the pretty colors below are just for visualization
# purposes and can easily be changed below without worrying.
# Colors set to None will not be rendered in rendered masks
PRETTY_COLORS = {
"road": "#444",
"crossing": "#F4A261",
"explicit_pedestrian": "#E9C46A",
"park": None,
"building": "#E76F51",
"water": None,
"terrain": "#2A9D8F",
"parking": "#CCC",
"train": None
}
# Better order for visualization
VIS_ORDER = ["terrain", "water", "park", "parking", "train",
"road", "explicit_pedestrian", "crossing", "building"]
def checkColor(code):
def check_ele(ele):
isColor = False
if "stroke" in ele.attribs:
if ele.attribs["stroke"] != "none":
color = colour.Color(ele.attribs["stroke"])
isColor |= color == colour.Color(code)
if "fill" in ele.attribs:
if ele.attribs["fill"] != "none":
color = colour.Color(ele.attribs["fill"])
isColor |= color == colour.Color(code)
return isColor
return check_ele
def hex2rgb(hex_str):
hex_str = hex_str.lstrip('#')
if len(hex_str) == 3:
hex_str = "".join([hex_str[i//2] for i in range(6)])
return tuple(int(hex_str[i:i+2], 16) for i in (0, 2, 4))
def mask2rgb(mask, pretty=True):
H,W,N = mask.shape
rgb = np.ones((H,W,3), dtype=np.uint8)*255
cmap = PRETTY_COLORS if pretty else COLORS
key2mask_i = dict(zip(cmap.keys(), range(N)))
for k in VIS_ORDER:
if cmap[k]:
rgb[mask[:,:, key2mask_i[k]]>0.5] = (np.array(hex2rgb(cmap[k])))
return rgb
def draw_bev(bbox: BoundaryBox, osm_data: OSMData,
configuration: MapConfiguration, meters_per_pixel: float, heading: float):
"""Rasterize OSM data as a BEV image"""
lat = bbox.center()[0]
# Equation rearranged from https://wiki.openstreetmap.org/wiki/Zoom_levels
# To get zoom level given meters_per_pixel
z = np.log2(np.abs(osm_data.equator_length*np.cos(np.deg2rad(lat))/meters_per_pixel/256))
flinger = MercatorFlinger(bbox, z, osm_data.equator_length)
size = flinger.size
svg: svgwrite.Drawing = svgwrite.Drawing(None, size) # None since we are not saving an svg file
icon_extractor: ShapeExtractor = ShapeExtractor(
workspace.ICONS_PATH, workspace.ICONS_CONFIG_PATH
)
constructor: Constructor = Constructor(
osm_data=osm_data,
flinger=flinger,
extractor=icon_extractor,
configuration=configuration,
)
constructor.construct()
map_: Map = Map(flinger=flinger, svg=svg, configuration=configuration)
try:
imgs = []
map_.draw(constructor)
# svg.defs.add(svgwrite.container.Style(f"transform: rotate({str(heading)}deg)"))
for ele in svg.elements:
ele.rotate(360 - heading, (size[0]/2, size[1]/2))
for k, v in COLORS.items():
svg_new = svg.copy()
svg_new.elements = list(filter(checkColor(v), svg_new.elements))
png_byte_string = cairosvg.svg2png(bytestring=svg_new.tostring(),
output_width=size[0],
output_height=size[1]) # convert svg to png
img = Image.open(io.BytesIO(png_byte_string))
imgs.append(img)
except Exception as e:
# Prepare the stack trace
stack_trace = traceback.format_exc()
logger.error(f"Failed to render BEV for bbox {bbox.get_format()}. Exception: {repr(e)}. Skipping.. Stack trace: {stack_trace}")
return None, None
return imgs, svg
def process_img(img, num_pixels, heading=None):
"""Rotate + Crop to correct for heading and ensure correct dimensions"""
img = center_pad(img, num_pixels, num_pixels)
s = min(img.size)
squared_img = center_crop_to_size(img, s, s) # Ensure it is square before rotating (Perhaps not needed)
if heading:
squared_img = squared_img.rotate(heading, expand=False, resample=Image.Resampling.BILINEAR)
center_cropped_bev_img = center_crop_to_size(squared_img, num_pixels, num_pixels)
# robot_cropped_bev_img = center_cropped_bev_img.crop((0, 0, num_pixels, num_pixels/2)) # left, upper, right, lower
return center_cropped_bev_img
def get_satellite_from_bbox(bbox, output_fp, num_pixels, heading):
# TODO: This method does not always produce a full satellite image.
# We need something more consistent like mapbox but free.
region = ee.Geometry.Rectangle(bbox, proj="EPSG:4326", geodesic=False)
# Load a satellite image collection, filter it by date and region, then select the first image
image = ee.ImageCollection('USDA/NAIP/DOQQ') \
.filterBounds(region) \
.filterDate('2022-01-01', '2022-12-31') \
.sort('CLOUDY_PIXEL_PERCENTAGE') \
.first().select(['R', 'G', 'B'])
# Reproject the image to a common projection (e.g., EPSG:4326)
image = image.reproject(crs='EPSG:4326', scale=0.5)
# Get the image URL
url = image.getThumbURL({'min': 0, 'max': 255, 'region': region.getInfo()['coordinates']})
# Download the image to your desktop
response = requests.get(url)
img = Image.open(io.BytesIO(response.content))
robot_cropped_bev_img = process_img(img, num_pixels, heading)
robot_cropped_bev_img.save(output_fp)
def get_data(address: str, parameters: dict[str, str]) -> bytes:
"""
Construct Internet page URL and get its descriptor.
:param address: URL without parameters
:param parameters: URL parameters
:return: connection descriptor
"""
for _ in range(50):
http = urllib3.PoolManager()
urllib3.disable_warnings()
try:
result = http.request("GET", address, fields=parameters)
except urllib3.exceptions.MaxRetryError:
continue
if result.status == 200:
break
else:
print(result.data)
raise NetworkError(f"Cannot download data: {result.status} {result.reason}")
http.clear()
return result.data
def get_osm_data(bbox: BoundaryBox, osm_output_fp: Path,
overwrite=False, use_lock=False) -> OSMData:
"""
Get OSM data within bounding box from usingoverpass APIs and
write data to osm_output_fp.
"""
OVERPASS_ENDPOINTS = [
"http://overpass-api.de/api/map",
"http://overpass.kumi.systems/api/map",
"http://maps.mail.ru/osm/tools/overpass/api/map"
]
RETRIES = 10
osm_data = None
overpass_endpoints_i = 0
for retry in range(RETRIES):
try:
# fetch or load from cache
# A lock is needed if we are using multiple processes without store_osm_per_id
# Since multiple workers may share the same cached OSM file.
# Note: Can optimize locking further by implementing a readers-writer lock scheme
if use_lock:
lock_fp = osm_output_fp.parent.parent / (osm_output_fp.parent.name + "_tmp_locks") / (osm_output_fp.name + ".lock")
lock = FileLock(lock_fp)
else:
lock = contextlib.nullcontext()
with lock:
if not overwrite and osm_output_fp.is_file():
with osm_output_fp.open(encoding="utf-8") as output_file:
xml_str = output_file.read()
else:
content: bytes = get_data(
address=OVERPASS_ENDPOINTS[overpass_endpoints_i],
parameters={"bbox": bbox.get_format()}
)
xml_str = content.decode("utf-8")
if not content.startswith(b"<?xml"):
raise Exception(f"Invalid content received: '{xml_str}'")
with osm_output_fp.open("bw+") as output_file:
output_file.write(content)
# parse OSM xml string
tree = ET.fromstring(xml_str)
osm_data = OSMData()
osm_data.parse_osm(tree, parse_nodes=True,
parse_relations=True, parse_ways=True)
break
except Exception as e:
msg = f"Error: Unable to fetch OSM data for bbox {bbox.get_format()} "\
f"for file {osm_output_fp} after {retry+1}/{RETRIES} attempts. Exception: {repr(e)}."
if retry < RETRIES-1:
overpass_endpoints_i = (overpass_endpoints_i+1) % len(OVERPASS_ENDPOINTS)
logger.error(f"{msg}. Retrying with {OVERPASS_ENDPOINTS[overpass_endpoints_i]} endpoint..")
continue
else:
logger.error(f"{msg}. Skipping..")
break
return osm_data, retry+1
def get_bev_from_bbox(
bbox: BoundaryBox,
num_pixels: int,
meters_per_pixel: float,
configuration: MapConfiguration,
osm_output_fp: Path,
bev_output_fp: Path,
mask_output_fp: Path,
rendered_mask_output_fp: Path,
osm_data: OSMData=None,
heading: float=0,
final_downsample: int=1,
download_osm_only: bool=False,
use_osm_cache_lock: bool=False,
) -> None:
"""Get BEV image from a boundary box. Optionally rotate, crop and save the extracted semantic mask."""
if osm_data is None:
if osm_output_fp.is_file():
# Load from cache
try:
osm_data = OSMData()
with osm_output_fp.open(encoding="utf-8") as output_file:
xml_str = output_file.read()
tree = ET.fromstring(xml_str)
osm_data.parse_osm(tree, parse_nodes=True,
parse_relations=True, parse_ways=True)
except Exception as e:
osm_data, _ = get_osm_data(bbox, osm_output_fp, use_lock=use_osm_cache_lock)
else:
# No local osm planet dump file. Need to download or read from cache
osm_data, _ = get_osm_data(bbox, osm_output_fp, use_lock=use_osm_cache_lock)
if osm_data is None:
return
if download_osm_only:
return
imgs, svg = draw_bev(bbox, osm_data, configuration, meters_per_pixel, heading)
if imgs is None:
return
if bev_output_fp:
svg.saveas(bev_output_fp)
cropped_imgs = []
for img in imgs:
# Set heading to None because we already rotated in draw_bev
cropped_imgs.append(process_img(img, num_pixels, heading=None))
masks = []
for img in cropped_imgs:
arr = np.array(img)
masks.append(arr[..., -1] != 0)
extracted_mask = np.stack(masks, axis=0)
extracted_mask[2][extracted_mask[0]] = 0
if final_downsample > 1:
max_pool_layer = nn.MaxPool2d(kernel_size=final_downsample, stride=final_downsample)
# Apply max pooling
mask_tensor = torch.tensor(extracted_mask, dtype=torch.float32).unsqueeze(0)
max_pool_tensor = max_pool_layer(mask_tensor)
# Remove the batch dimension and permute back to original dimension order, then convert to numpy
multilabel_mask_downsampled = max_pool_tensor.squeeze(0).permute(1, 2, 0).numpy()
else:
multilabel_mask_downsampled = extracted_mask.transpose(1, 2, 0)
# Save npz files for semantic masks
if mask_output_fp:
np.savez_compressed(mask_output_fp, multilabel_mask_downsampled)
# Save rendered BEV map if we want for visualization
if rendered_mask_output_fp:
rgb = mask2rgb(multilabel_mask_downsampled)
plt.imsave(rendered_mask_output_fp.with_suffix('.png'), rgb)
def get_bev_from_bbox_worker_init(osm_cache_dir, bev_dir, semantic_mask_dir, rendered_mask_dir,
scheme_path, map_length, meters_per_pixel,
osm_data, redownload, download_osm_only, store_osm_per_id,
use_osm_cache_lock, final_downsample):
global worker_kwargs
worker_kwargs=locals()
# MapConfiguration is not picklable so we have to initialize it for each worker
scheme = Scheme.from_file(Path(scheme_path))
configuration = MapConfiguration(scheme)
configuration.show_credit = False
worker_kwargs["configuration"] = configuration
logger.info(f"Worker {os.getpid()} started.")
def get_bev_from_bbox_worker(job_dict):
id = job_dict['id']
bbox = job_dict['bbox_formatted']
bbox = BoundaryBox.from_text(bbox)
heading = job_dict['computed_compass_angle']
# Setting a path to None disables storing that file
bev_fp = worker_kwargs["bev_dir"]
if bev_fp:
bev_fp = bev_fp / f"{id}.svg"
semantic_mask_fp = worker_kwargs["semantic_mask_dir"]
if semantic_mask_fp:
semantic_mask_fp = semantic_mask_fp / f"{id}.npz"
rendered_mask_fp = worker_kwargs["rendered_mask_dir"]
if rendered_mask_fp:
rendered_mask_fp = rendered_mask_fp / f"{id}.png"
if worker_kwargs["store_osm_per_id"]:
osm_output_fp = worker_kwargs["osm_cache_dir"] / f"{id}.osm"
else:
osm_output_fp = worker_kwargs["osm_cache_dir"] / f"{bbox.get_format()}.osm"
if ( (bev_fp is None or bev_fp.exists() ) # Bev exists or we don't want to save it
and (semantic_mask_fp is None or semantic_mask_fp.exists()) # ...
and (rendered_mask_fp is None or rendered_mask_fp.exists()) # ...
and not worker_kwargs["redownload"]):
return
get_bev_from_bbox(bbox=bbox,
num_pixels=worker_kwargs["map_length"],
meters_per_pixel=worker_kwargs["meters_per_pixel"],
configuration=worker_kwargs["configuration"],
osm_output_fp=osm_output_fp,
bev_output_fp=bev_fp,
mask_output_fp=semantic_mask_fp,
rendered_mask_output_fp=rendered_mask_fp,
osm_data=worker_kwargs["osm_data"],
heading=heading,
final_downsample=worker_kwargs["final_downsample"],
download_osm_only=worker_kwargs["download_osm_only"],
use_osm_cache_lock=worker_kwargs["use_osm_cache_lock"])
def main(dataset_dir, locations, args):
# setup directory paths
dataset_dir = Path(dataset_dir)
for loc in locations:
loc_name = loc["name"].lower().replace(" ", "_")
location_dir = dataset_dir / loc_name
osm_cache_dir = location_dir / "osm_cache"
bev_dir = location_dir / "bev_raw" if args.store_all_steps else None
semantic_mask_dir = location_dir / "semantic_masks"
rendered_mask_dir = location_dir / "rendered_semantic_masks" if args.store_all_steps else None
for d in [location_dir, osm_cache_dir, bev_dir, semantic_mask_dir, rendered_mask_dir]:
if d:
d.mkdir(parents=True, exist_ok=True)
# read the parquet file
parquet_fp = location_dir / f"image_metadata_filtered_processed.parquet"
logger.info(f"Reading parquet file from {parquet_fp}.")
df = pd.read_parquet(parquet_fp)
if args.n_samples > 0:# If -1, use all samples
logger.info(f"Sampling {args.n_samples} rows.")
df = df.sample(args.n_samples, replace=False, random_state=1)
df.reset_index(drop=True, inplace=True)
logger.info(f"Read {len(df)} rows from the parquet file.")
# convert pandas dataframe to geopandas dataframe
gdf = gpd.GeoDataFrame(df,
geometry=gpd.points_from_xy(
df['computed_geometry.long'],
df['computed_geometry.lat']),
crs=4326)
# convert the geopandas dataframe to UTM
utm_crs = gdf.estimate_utm_crs()
gdf_utm = gdf.to_crs(utm_crs)
transformer = Transformer.from_crs(utm_crs, 4326)
logger.info(f"UTM zone for {loc_name} is {utm_crs.to_epsg()}.")
# load OSM data, if available
padding = args.padding
# calculate the required distance from the center to the edge of the image
# so that the image will not be out of bounds when we rotate it
map_length = args.map_length
map_length = ceil(sqrt(map_length**2 + map_length**2))
distance = map_length * args.meters_per_pixel / 2
logger.info(f"Each image will be {map_length:.2f} x {map_length:.2f} pixels. The distance from the center to the edge is {distance:.2f} meters.")
osm_data = None
if args.osm_fp:
logger.info(f"Loading OSM data from {args.osm_fp}.")
osm_fp = Path(args.osm_fp)
osm_data = OSMData()
if osm_fp.suffix == '.osm':
osm_data.parse_osm_file(osm_fp)
elif osm_fp.suffix == '.json':
osm_data.parse_overpass(osm_fp)
else:
raise ValueError(f"OSM file format {osm_fp.suffix} is not supported.")
# make sure that the loaded osm data at least covers some points in the dataframe
bbox = osm_data.boundary_box
shapely_bbox = box(bbox.left, bbox.bottom, bbox.right, bbox.top)
logger.warning(f"Clipping the geopandas dataframe to the OSM boundary box. May result in loss of points.")
gdf = gpd.clip(gdf, shapely_bbox)
if gdf.empty:
raise ValueError("Clipped geopandas dataframe is empty. Exiting.")
logger.info(f"Clipped geopandas dataframe is left with {len(gdf)} points.")
elif args.one_big_osm:
osm_fp = location_dir / "one_big_map.osm"
min_long = gdf_utm.geometry.x.min() - distance - padding
max_long = gdf_utm.geometry.x.max() + distance + padding
min_lat = gdf_utm.geometry.y.min() - distance - padding
max_lat = gdf_utm.geometry.y.max() + distance + padding
padding = 0
big_bbox = transformer.transform_bounds(left=min_long, bottom=min_lat, right=max_long, top=max_lat)
# TODO: Check why transformer is flipping lat long
big_bbox = (big_bbox[1], big_bbox[0], big_bbox[3], big_bbox[2])
big_bbox_fmt = ",".join([str(x) for x in big_bbox])
logger.info(f"Fetching one big osm file using coordinates {big_bbox_fmt}.")
big_bbox = BoundaryBox.from_text(big_bbox_fmt)
osm_data, retries = get_osm_data(big_bbox, osm_fp, overwrite=args.redownload)
# create bounding boxes for each point
gdf_utm['bounding_box_utm_p1'] = gdf_utm.apply(lambda row: (
row.geometry.x - distance - padding,
row.geometry.y - distance - padding,
), axis=1)
gdf_utm['bounding_box_utm_p2'] = gdf_utm.apply(lambda row: (
row.geometry.x + distance + padding,
row.geometry.y + distance + padding,
), axis=1)
# convert the bounding box back to lat, long
gdf_utm['bounding_box_lat_long_p1'] = gdf_utm.apply(lambda row: transformer.transform(*row['bounding_box_utm_p1']), axis=1)
gdf_utm['bounding_box_lat_long_p2'] = gdf_utm.apply(lambda row: transformer.transform(*row['bounding_box_utm_p2']), axis=1)
gdf_utm['bbox_min_lat'] = gdf_utm['bounding_box_lat_long_p1'].apply(lambda x: x[0])
gdf_utm['bbox_min_long'] = gdf_utm['bounding_box_lat_long_p1'].apply(lambda x: x[1])
gdf_utm['bbox_max_lat'] = gdf_utm['bounding_box_lat_long_p2'].apply(lambda x: x[0])
gdf_utm['bbox_max_long'] = gdf_utm['bounding_box_lat_long_p2'].apply(lambda x: x[1])
gdf_utm['bbox_formatted'] = gdf_utm.apply(lambda row: f"{row['bbox_min_long']},{row['bbox_min_lat']},{row['bbox_max_long']},{row['bbox_max_lat']}", axis=1)
# iterate over the dataframe and get BEV images
jobs = gdf_utm[['id', 'bbox_formatted', 'computed_compass_angle']] # only need the id and bbox_formatted columns for the jobs
jobs = jobs.to_dict(orient='records').copy()
use_osm_cache_lock = args.n_workers > 0 and not args.store_osm_per_id
if use_osm_cache_lock:
logger.info("Using osm cache locks to prevent race conditions since number of workers > 0 and store_osm_per_id is false")
init_args = [osm_cache_dir, bev_dir, semantic_mask_dir, rendered_mask_dir,
args.map_machine_scheme,
args.map_length, args.meters_per_pixel,
osm_data, args.redownload, args.download_osm_only,
args.store_osm_per_id, use_osm_cache_lock, args.final_downsample]
if args.n_workers > 0:
logger.info(f"Launching {args.n_workers} workers to fetch BEVs for {len(jobs)} bounding boxes.")
with mp.Pool(args.n_workers,
initializer=get_bev_from_bbox_worker_init,
initargs=init_args) as pool:
for _ in tqdm(pool.imap_unordered(get_bev_from_bbox_worker, jobs, chunksize=16),
total=len(jobs), desc="Getting BEV images"):
pass
else:
get_bev_from_bbox_worker_init(*init_args)
pbar = tqdm(jobs, desc="Getting BEV images")
for job_dict in pbar:
get_bev_from_bbox_worker(job_dict)
# Download sattelite images if needed
if args.store_sat:
logger.info("Downloading sattelite images.")
sat_dir = location_dir / "sattelite"
sat_dir.mkdir(parents=True, exist_ok=True)
pbar = tqdm(jobs, desc="Getting Sattelite images")
for job_dict in pbar:
id = job_dict['id']
sat_fp = sat_dir / f"{id}.png"
if sat_fp.exists() and not args.redownload:
continue
bbox = [float(x) for x in job_dict['bbox_formatted'].split(",")]
try:
get_satellite_from_bbox(bbox, sat_fp, heading=job_dict['computed_compass_angle'], num_pixels=args.map_length)
except Exception as e:
logger.error(f"Failed to get sattelite image for bbox {job_dict['bbox_formatted']}. Exception {repr(e)}")
# TODO: Post BEV retireval filtering
# df.to_parquet(location_dir / "image_metadata_bev_processed.parquet")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Get BEV images from a dataset of locations using MapMachine.")
parser.add_argument("--cfg", type=str, default="mia/conf/example.yaml", help="Path to config yaml file.")
args = parser.parse_args()
cfgs = OmegaConf.load(args.cfg)
if cfgs.bev_options.store_sat:
if cfgs.bev_options.n_workers > 0:
logger.fatal("Satellite download is not multiprocessed yet !!")
import ee
ee.Initialize()
logger.info("="*80)
logger.info("Running get_bev.py")
logger.info("Arguments:")
for arg in vars(args):
logger.info(f"- {arg}: {getattr(args, arg)}")
logger.info("="*80)
main(cfgs.dataset_dir, cfgs.cities, cfgs.bev_options)