Spaces:
Building
Building
File size: 25,029 Bytes
4187c6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
"""Script to get BEV images from a dataset of locations.
Example usage:
python3.9 -m mia.bev.get_bev
"""
import argparse
import multiprocessing as mp
from pathlib import Path
import io
import os
import requests
import contextlib
import traceback
import colour
import numpy as np
from matplotlib import pyplot as plt
import pandas as pd
import geopandas as gpd
import torch.nn as nn
import torch
from tqdm import tqdm
from filelock import FileLock
from math import sqrt, ceil
import svgwrite
import cairosvg
from PIL import Image
from xml.etree import ElementTree as ET
from pyproj.transformer import Transformer
from shapely.geometry import box
from omegaconf import OmegaConf
import urllib3
from map_machine.map_configuration import MapConfiguration
from map_machine.scheme import Scheme
from map_machine.geometry.boundary_box import BoundaryBox
from map_machine.osm.osm_getter import NetworkError
from map_machine.osm.osm_reader import OSMData
from map_machine.geometry.flinger import MercatorFlinger
from map_machine.pictogram.icon import ShapeExtractor
from map_machine.workspace import workspace
from map_machine.mapper import Map
from map_machine.constructor import Constructor
from .. import logger
from .image import center_crop_to_size, center_pad
# MUST match colors from map rendering style
COLORS = {
"road": "#000",
"crossing": "#F00",
"explicit_pedestrian": "#FF0",
"park": "#0F0",
"building": "#F0F",
"water": "#00F",
"terrain": "#0FF",
"parking": "#AAA",
"train": "#555"
}
# While the color mapping above must match what is in the
# rendering style, the pretty colors below are just for visualization
# purposes and can easily be changed below without worrying.
# Colors set to None will not be rendered in rendered masks
PRETTY_COLORS = {
"road": "#444",
"crossing": "#F4A261",
"explicit_pedestrian": "#E9C46A",
"park": None,
"building": "#E76F51",
"water": None,
"terrain": "#2A9D8F",
"parking": "#CCC",
"train": None
}
# Better order for visualization
VIS_ORDER = ["terrain", "water", "park", "parking", "train",
"road", "explicit_pedestrian", "crossing", "building"]
def checkColor(code):
def check_ele(ele):
isColor = False
if "stroke" in ele.attribs:
if ele.attribs["stroke"] != "none":
color = colour.Color(ele.attribs["stroke"])
isColor |= color == colour.Color(code)
if "fill" in ele.attribs:
if ele.attribs["fill"] != "none":
color = colour.Color(ele.attribs["fill"])
isColor |= color == colour.Color(code)
return isColor
return check_ele
def hex2rgb(hex_str):
hex_str = hex_str.lstrip('#')
if len(hex_str) == 3:
hex_str = "".join([hex_str[i//2] for i in range(6)])
return tuple(int(hex_str[i:i+2], 16) for i in (0, 2, 4))
def mask2rgb(mask, pretty=True):
H,W,N = mask.shape
rgb = np.ones((H,W,3), dtype=np.uint8)*255
cmap = PRETTY_COLORS if pretty else COLORS
key2mask_i = dict(zip(cmap.keys(), range(N)))
for k in VIS_ORDER:
if cmap[k]:
rgb[mask[:,:, key2mask_i[k]]>0.5] = (np.array(hex2rgb(cmap[k])))
return rgb
def draw_bev(bbox: BoundaryBox, osm_data: OSMData,
configuration: MapConfiguration, meters_per_pixel: float, heading: float):
"""Rasterize OSM data as a BEV image"""
lat = bbox.center()[0]
# Equation rearranged from https://wiki.openstreetmap.org/wiki/Zoom_levels
# To get zoom level given meters_per_pixel
z = np.log2(np.abs(osm_data.equator_length*np.cos(np.deg2rad(lat))/meters_per_pixel/256))
flinger = MercatorFlinger(bbox, z, osm_data.equator_length)
size = flinger.size
svg: svgwrite.Drawing = svgwrite.Drawing(None, size) # None since we are not saving an svg file
icon_extractor: ShapeExtractor = ShapeExtractor(
workspace.ICONS_PATH, workspace.ICONS_CONFIG_PATH
)
constructor: Constructor = Constructor(
osm_data=osm_data,
flinger=flinger,
extractor=icon_extractor,
configuration=configuration,
)
constructor.construct()
map_: Map = Map(flinger=flinger, svg=svg, configuration=configuration)
try:
imgs = []
map_.draw(constructor)
# svg.defs.add(svgwrite.container.Style(f"transform: rotate({str(heading)}deg)"))
for ele in svg.elements:
ele.rotate(360 - heading, (size[0]/2, size[1]/2))
for k, v in COLORS.items():
svg_new = svg.copy()
svg_new.elements = list(filter(checkColor(v), svg_new.elements))
png_byte_string = cairosvg.svg2png(bytestring=svg_new.tostring(),
output_width=size[0],
output_height=size[1]) # convert svg to png
img = Image.open(io.BytesIO(png_byte_string))
imgs.append(img)
except Exception as e:
# Prepare the stack trace
stack_trace = traceback.format_exc()
logger.error(f"Failed to render BEV for bbox {bbox.get_format()}. Exception: {repr(e)}. Skipping.. Stack trace: {stack_trace}")
return None, None
return imgs, svg
def process_img(img, num_pixels, heading=None):
"""Rotate + Crop to correct for heading and ensure correct dimensions"""
img = center_pad(img, num_pixels, num_pixels)
s = min(img.size)
squared_img = center_crop_to_size(img, s, s) # Ensure it is square before rotating (Perhaps not needed)
if heading:
squared_img = squared_img.rotate(heading, expand=False, resample=Image.Resampling.BILINEAR)
center_cropped_bev_img = center_crop_to_size(squared_img, num_pixels, num_pixels)
# robot_cropped_bev_img = center_cropped_bev_img.crop((0, 0, num_pixels, num_pixels/2)) # left, upper, right, lower
return center_cropped_bev_img
def get_satellite_from_bbox(bbox, output_fp, num_pixels, heading):
# TODO: This method does not always produce a full satellite image.
# We need something more consistent like mapbox but free.
region = ee.Geometry.Rectangle(bbox, proj="EPSG:4326", geodesic=False)
# Load a satellite image collection, filter it by date and region, then select the first image
image = ee.ImageCollection('USDA/NAIP/DOQQ') \
.filterBounds(region) \
.filterDate('2022-01-01', '2022-12-31') \
.sort('CLOUDY_PIXEL_PERCENTAGE') \
.first().select(['R', 'G', 'B'])
# Reproject the image to a common projection (e.g., EPSG:4326)
image = image.reproject(crs='EPSG:4326', scale=0.5)
# Get the image URL
url = image.getThumbURL({'min': 0, 'max': 255, 'region': region.getInfo()['coordinates']})
# Download the image to your desktop
response = requests.get(url)
img = Image.open(io.BytesIO(response.content))
robot_cropped_bev_img = process_img(img, num_pixels, heading)
robot_cropped_bev_img.save(output_fp)
def get_data(address: str, parameters: dict[str, str]) -> bytes:
"""
Construct Internet page URL and get its descriptor.
:param address: URL without parameters
:param parameters: URL parameters
:return: connection descriptor
"""
for _ in range(50):
http = urllib3.PoolManager()
urllib3.disable_warnings()
try:
result = http.request("GET", address, fields=parameters)
except urllib3.exceptions.MaxRetryError:
continue
if result.status == 200:
break
else:
print(result.data)
raise NetworkError(f"Cannot download data: {result.status} {result.reason}")
http.clear()
return result.data
def get_osm_data(bbox: BoundaryBox, osm_output_fp: Path,
overwrite=False, use_lock=False) -> OSMData:
"""
Get OSM data within bounding box from usingoverpass APIs and
write data to osm_output_fp.
"""
OVERPASS_ENDPOINTS = [
"http://overpass-api.de/api/map",
"http://overpass.kumi.systems/api/map",
"http://maps.mail.ru/osm/tools/overpass/api/map"
]
RETRIES = 10
osm_data = None
overpass_endpoints_i = 0
for retry in range(RETRIES):
try:
# fetch or load from cache
# A lock is needed if we are using multiple processes without store_osm_per_id
# Since multiple workers may share the same cached OSM file.
# Note: Can optimize locking further by implementing a readers-writer lock scheme
if use_lock:
lock_fp = osm_output_fp.parent.parent / (osm_output_fp.parent.name + "_tmp_locks") / (osm_output_fp.name + ".lock")
lock = FileLock(lock_fp)
else:
lock = contextlib.nullcontext()
with lock:
if not overwrite and osm_output_fp.is_file():
with osm_output_fp.open(encoding="utf-8") as output_file:
xml_str = output_file.read()
else:
content: bytes = get_data(
address=OVERPASS_ENDPOINTS[overpass_endpoints_i],
parameters={"bbox": bbox.get_format()}
)
xml_str = content.decode("utf-8")
if not content.startswith(b"<?xml"):
raise Exception(f"Invalid content received: '{xml_str}'")
with osm_output_fp.open("bw+") as output_file:
output_file.write(content)
# parse OSM xml string
tree = ET.fromstring(xml_str)
osm_data = OSMData()
osm_data.parse_osm(tree, parse_nodes=True,
parse_relations=True, parse_ways=True)
break
except Exception as e:
msg = f"Error: Unable to fetch OSM data for bbox {bbox.get_format()} "\
f"for file {osm_output_fp} after {retry+1}/{RETRIES} attempts. Exception: {repr(e)}."
if retry < RETRIES-1:
overpass_endpoints_i = (overpass_endpoints_i+1) % len(OVERPASS_ENDPOINTS)
logger.error(f"{msg}. Retrying with {OVERPASS_ENDPOINTS[overpass_endpoints_i]} endpoint..")
continue
else:
logger.error(f"{msg}. Skipping..")
break
return osm_data, retry+1
def get_bev_from_bbox(
bbox: BoundaryBox,
num_pixels: int,
meters_per_pixel: float,
configuration: MapConfiguration,
osm_output_fp: Path,
bev_output_fp: Path,
mask_output_fp: Path,
rendered_mask_output_fp: Path,
osm_data: OSMData=None,
heading: float=0,
final_downsample: int=1,
download_osm_only: bool=False,
use_osm_cache_lock: bool=False,
) -> None:
"""Get BEV image from a boundary box. Optionally rotate, crop and save the extracted semantic mask."""
if osm_data is None:
if osm_output_fp.is_file():
# Load from cache
try:
osm_data = OSMData()
with osm_output_fp.open(encoding="utf-8") as output_file:
xml_str = output_file.read()
tree = ET.fromstring(xml_str)
osm_data.parse_osm(tree, parse_nodes=True,
parse_relations=True, parse_ways=True)
except Exception as e:
osm_data, _ = get_osm_data(bbox, osm_output_fp, use_lock=use_osm_cache_lock)
else:
# No local osm planet dump file. Need to download or read from cache
osm_data, _ = get_osm_data(bbox, osm_output_fp, use_lock=use_osm_cache_lock)
if osm_data is None:
return
if download_osm_only:
return
imgs, svg = draw_bev(bbox, osm_data, configuration, meters_per_pixel, heading)
if imgs is None:
return
if bev_output_fp:
svg.saveas(bev_output_fp)
cropped_imgs = []
for img in imgs:
# Set heading to None because we already rotated in draw_bev
cropped_imgs.append(process_img(img, num_pixels, heading=None))
masks = []
for img in cropped_imgs:
arr = np.array(img)
masks.append(arr[..., -1] != 0)
extracted_mask = np.stack(masks, axis=0)
extracted_mask[2][extracted_mask[0]] = 0
if final_downsample > 1:
max_pool_layer = nn.MaxPool2d(kernel_size=final_downsample, stride=final_downsample)
# Apply max pooling
mask_tensor = torch.tensor(extracted_mask, dtype=torch.float32).unsqueeze(0)
max_pool_tensor = max_pool_layer(mask_tensor)
# Remove the batch dimension and permute back to original dimension order, then convert to numpy
multilabel_mask_downsampled = max_pool_tensor.squeeze(0).permute(1, 2, 0).numpy()
else:
multilabel_mask_downsampled = extracted_mask.transpose(1, 2, 0)
# Save npz files for semantic masks
if mask_output_fp:
np.savez_compressed(mask_output_fp, multilabel_mask_downsampled)
# Save rendered BEV map if we want for visualization
if rendered_mask_output_fp:
rgb = mask2rgb(multilabel_mask_downsampled)
plt.imsave(rendered_mask_output_fp.with_suffix('.png'), rgb)
def get_bev_from_bbox_worker_init(osm_cache_dir, bev_dir, semantic_mask_dir, rendered_mask_dir,
scheme_path, map_length, meters_per_pixel,
osm_data, redownload, download_osm_only, store_osm_per_id,
use_osm_cache_lock, final_downsample):
global worker_kwargs
worker_kwargs=locals()
# MapConfiguration is not picklable so we have to initialize it for each worker
scheme = Scheme.from_file(Path(scheme_path))
configuration = MapConfiguration(scheme)
configuration.show_credit = False
worker_kwargs["configuration"] = configuration
logger.info(f"Worker {os.getpid()} started.")
def get_bev_from_bbox_worker(job_dict):
id = job_dict['id']
bbox = job_dict['bbox_formatted']
bbox = BoundaryBox.from_text(bbox)
heading = job_dict['computed_compass_angle']
# Setting a path to None disables storing that file
bev_fp = worker_kwargs["bev_dir"]
if bev_fp:
bev_fp = bev_fp / f"{id}.svg"
semantic_mask_fp = worker_kwargs["semantic_mask_dir"]
if semantic_mask_fp:
semantic_mask_fp = semantic_mask_fp / f"{id}.npz"
rendered_mask_fp = worker_kwargs["rendered_mask_dir"]
if rendered_mask_fp:
rendered_mask_fp = rendered_mask_fp / f"{id}.png"
if worker_kwargs["store_osm_per_id"]:
osm_output_fp = worker_kwargs["osm_cache_dir"] / f"{id}.osm"
else:
osm_output_fp = worker_kwargs["osm_cache_dir"] / f"{bbox.get_format()}.osm"
if ( (bev_fp is None or bev_fp.exists() ) # Bev exists or we don't want to save it
and (semantic_mask_fp is None or semantic_mask_fp.exists()) # ...
and (rendered_mask_fp is None or rendered_mask_fp.exists()) # ...
and not worker_kwargs["redownload"]):
return
get_bev_from_bbox(bbox=bbox,
num_pixels=worker_kwargs["map_length"],
meters_per_pixel=worker_kwargs["meters_per_pixel"],
configuration=worker_kwargs["configuration"],
osm_output_fp=osm_output_fp,
bev_output_fp=bev_fp,
mask_output_fp=semantic_mask_fp,
rendered_mask_output_fp=rendered_mask_fp,
osm_data=worker_kwargs["osm_data"],
heading=heading,
final_downsample=worker_kwargs["final_downsample"],
download_osm_only=worker_kwargs["download_osm_only"],
use_osm_cache_lock=worker_kwargs["use_osm_cache_lock"])
def main(dataset_dir, locations, args):
# setup directory paths
dataset_dir = Path(dataset_dir)
for loc in locations:
loc_name = loc["name"].lower().replace(" ", "_")
location_dir = dataset_dir / loc_name
osm_cache_dir = location_dir / "osm_cache"
bev_dir = location_dir / "bev_raw" if args.store_all_steps else None
semantic_mask_dir = location_dir / "semantic_masks"
rendered_mask_dir = location_dir / "rendered_semantic_masks" if args.store_all_steps else None
for d in [location_dir, osm_cache_dir, bev_dir, semantic_mask_dir, rendered_mask_dir]:
if d:
d.mkdir(parents=True, exist_ok=True)
# read the parquet file
parquet_fp = location_dir / f"image_metadata_filtered_processed.parquet"
logger.info(f"Reading parquet file from {parquet_fp}.")
df = pd.read_parquet(parquet_fp)
if args.n_samples > 0:# If -1, use all samples
logger.info(f"Sampling {args.n_samples} rows.")
df = df.sample(args.n_samples, replace=False, random_state=1)
df.reset_index(drop=True, inplace=True)
logger.info(f"Read {len(df)} rows from the parquet file.")
# convert pandas dataframe to geopandas dataframe
gdf = gpd.GeoDataFrame(df,
geometry=gpd.points_from_xy(
df['computed_geometry.long'],
df['computed_geometry.lat']),
crs=4326)
# convert the geopandas dataframe to UTM
utm_crs = gdf.estimate_utm_crs()
gdf_utm = gdf.to_crs(utm_crs)
transformer = Transformer.from_crs(utm_crs, 4326)
logger.info(f"UTM zone for {loc_name} is {utm_crs.to_epsg()}.")
# load OSM data, if available
padding = args.padding
# calculate the required distance from the center to the edge of the image
# so that the image will not be out of bounds when we rotate it
map_length = args.map_length
map_length = ceil(sqrt(map_length**2 + map_length**2))
distance = map_length * args.meters_per_pixel / 2
logger.info(f"Each image will be {map_length:.2f} x {map_length:.2f} pixels. The distance from the center to the edge is {distance:.2f} meters.")
osm_data = None
if args.osm_fp:
logger.info(f"Loading OSM data from {args.osm_fp}.")
osm_fp = Path(args.osm_fp)
osm_data = OSMData()
if osm_fp.suffix == '.osm':
osm_data.parse_osm_file(osm_fp)
elif osm_fp.suffix == '.json':
osm_data.parse_overpass(osm_fp)
else:
raise ValueError(f"OSM file format {osm_fp.suffix} is not supported.")
# make sure that the loaded osm data at least covers some points in the dataframe
bbox = osm_data.boundary_box
shapely_bbox = box(bbox.left, bbox.bottom, bbox.right, bbox.top)
logger.warning(f"Clipping the geopandas dataframe to the OSM boundary box. May result in loss of points.")
gdf = gpd.clip(gdf, shapely_bbox)
if gdf.empty:
raise ValueError("Clipped geopandas dataframe is empty. Exiting.")
logger.info(f"Clipped geopandas dataframe is left with {len(gdf)} points.")
elif args.one_big_osm:
osm_fp = location_dir / "one_big_map.osm"
min_long = gdf_utm.geometry.x.min() - distance - padding
max_long = gdf_utm.geometry.x.max() + distance + padding
min_lat = gdf_utm.geometry.y.min() - distance - padding
max_lat = gdf_utm.geometry.y.max() + distance + padding
padding = 0
big_bbox = transformer.transform_bounds(left=min_long, bottom=min_lat, right=max_long, top=max_lat)
# TODO: Check why transformer is flipping lat long
big_bbox = (big_bbox[1], big_bbox[0], big_bbox[3], big_bbox[2])
big_bbox_fmt = ",".join([str(x) for x in big_bbox])
logger.info(f"Fetching one big osm file using coordinates {big_bbox_fmt}.")
big_bbox = BoundaryBox.from_text(big_bbox_fmt)
osm_data, retries = get_osm_data(big_bbox, osm_fp, overwrite=args.redownload)
# create bounding boxes for each point
gdf_utm['bounding_box_utm_p1'] = gdf_utm.apply(lambda row: (
row.geometry.x - distance - padding,
row.geometry.y - distance - padding,
), axis=1)
gdf_utm['bounding_box_utm_p2'] = gdf_utm.apply(lambda row: (
row.geometry.x + distance + padding,
row.geometry.y + distance + padding,
), axis=1)
# convert the bounding box back to lat, long
gdf_utm['bounding_box_lat_long_p1'] = gdf_utm.apply(lambda row: transformer.transform(*row['bounding_box_utm_p1']), axis=1)
gdf_utm['bounding_box_lat_long_p2'] = gdf_utm.apply(lambda row: transformer.transform(*row['bounding_box_utm_p2']), axis=1)
gdf_utm['bbox_min_lat'] = gdf_utm['bounding_box_lat_long_p1'].apply(lambda x: x[0])
gdf_utm['bbox_min_long'] = gdf_utm['bounding_box_lat_long_p1'].apply(lambda x: x[1])
gdf_utm['bbox_max_lat'] = gdf_utm['bounding_box_lat_long_p2'].apply(lambda x: x[0])
gdf_utm['bbox_max_long'] = gdf_utm['bounding_box_lat_long_p2'].apply(lambda x: x[1])
gdf_utm['bbox_formatted'] = gdf_utm.apply(lambda row: f"{row['bbox_min_long']},{row['bbox_min_lat']},{row['bbox_max_long']},{row['bbox_max_lat']}", axis=1)
# iterate over the dataframe and get BEV images
jobs = gdf_utm[['id', 'bbox_formatted', 'computed_compass_angle']] # only need the id and bbox_formatted columns for the jobs
jobs = jobs.to_dict(orient='records').copy()
use_osm_cache_lock = args.n_workers > 0 and not args.store_osm_per_id
if use_osm_cache_lock:
logger.info("Using osm cache locks to prevent race conditions since number of workers > 0 and store_osm_per_id is false")
init_args = [osm_cache_dir, bev_dir, semantic_mask_dir, rendered_mask_dir,
args.map_machine_scheme,
args.map_length, args.meters_per_pixel,
osm_data, args.redownload, args.download_osm_only,
args.store_osm_per_id, use_osm_cache_lock, args.final_downsample]
if args.n_workers > 0:
logger.info(f"Launching {args.n_workers} workers to fetch BEVs for {len(jobs)} bounding boxes.")
with mp.Pool(args.n_workers,
initializer=get_bev_from_bbox_worker_init,
initargs=init_args) as pool:
for _ in tqdm(pool.imap_unordered(get_bev_from_bbox_worker, jobs, chunksize=16),
total=len(jobs), desc="Getting BEV images"):
pass
else:
get_bev_from_bbox_worker_init(*init_args)
pbar = tqdm(jobs, desc="Getting BEV images")
for job_dict in pbar:
get_bev_from_bbox_worker(job_dict)
# Download sattelite images if needed
if args.store_sat:
logger.info("Downloading sattelite images.")
sat_dir = location_dir / "sattelite"
sat_dir.mkdir(parents=True, exist_ok=True)
pbar = tqdm(jobs, desc="Getting Sattelite images")
for job_dict in pbar:
id = job_dict['id']
sat_fp = sat_dir / f"{id}.png"
if sat_fp.exists() and not args.redownload:
continue
bbox = [float(x) for x in job_dict['bbox_formatted'].split(",")]
try:
get_satellite_from_bbox(bbox, sat_fp, heading=job_dict['computed_compass_angle'], num_pixels=args.map_length)
except Exception as e:
logger.error(f"Failed to get sattelite image for bbox {job_dict['bbox_formatted']}. Exception {repr(e)}")
# TODO: Post BEV retireval filtering
# df.to_parquet(location_dir / "image_metadata_bev_processed.parquet")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Get BEV images from a dataset of locations using MapMachine.")
parser.add_argument("--cfg", type=str, default="mia/conf/example.yaml", help="Path to config yaml file.")
args = parser.parse_args()
cfgs = OmegaConf.load(args.cfg)
if cfgs.bev_options.store_sat:
if cfgs.bev_options.n_workers > 0:
logger.fatal("Satellite download is not multiprocessed yet !!")
import ee
ee.Initialize()
logger.info("="*80)
logger.info("Running get_bev.py")
logger.info("Arguments:")
for arg in vars(args):
logger.info(f"- {arg}: {getattr(args, arg)}")
logger.info("="*80)
main(cfgs.dataset_dir, cfgs.cities, cfgs.bev_options) |