hocherie
add files
4187c6f
raw
history blame
9.38 kB
from copy import deepcopy
from pathlib import Path
from typing import Any, Dict, List
import numpy as np
import torch
import torch.utils.data as torchdata
import torchvision.transforms as tvf
from PIL import Image
from pathlib import Path
from ...models.utils import deg2rad, rotmat2d
from ...utils.io import read_image
from ...utils.wrappers import Camera
from ..image import pad_image, rectify_image, resize_image
from ..utils import decompose_rotmat
from ..schema import MIADataConfiguration
class MapLocDataset(torchdata.Dataset):
def __init__(
self,
stage: str,
cfg: MIADataConfiguration,
names: List[str],
data: Dict[str, Any],
image_dirs: Dict[str, Path],
seg_mask_dirs: Dict[str, Path],
flood_masks_dirs: Dict[str, Path],
image_ext: str = "",
):
self.stage = stage
self.cfg = deepcopy(cfg)
self.data = data
self.image_dirs = image_dirs
self.seg_mask_dirs = seg_mask_dirs
self.flood_masks_dirs = flood_masks_dirs
self.names = names
self.image_ext = image_ext
tfs = []
self.tfs = tvf.Compose(tfs)
self.augmentations = self.get_augmentations()
def __len__(self):
return len(self.names)
def __getitem__(self, idx):
if self.stage == "train" and self.cfg.random:
seed = None
else:
seed = [self.cfg.seed, idx]
(seed,) = np.random.SeedSequence(seed).generate_state(1)
scene, seq, name = self.names[idx]
view = self.get_view(
idx, scene, seq, name, seed
)
return view
def get_augmentations(self):
if self.stage != "train" or not self.cfg.augmentations.enabled:
print(f"No Augmentation!", "\n" * 10)
self.cfg.augmentations.random_flip = 0.0
return tvf.Compose([])
print(f"Augmentation!", "\n" * 10)
augmentations = [
tvf.ColorJitter(
brightness=self.cfg.augmentations.brightness,
contrast=self.cfg.augmentations.contrast,
saturation=self.cfg.augmentations.saturation,
hue=self.cfg.augmentations.hue,
)
]
if self.cfg.augmentations.random_resized_crop:
augmentations.append(
tvf.RandomResizedCrop(scale=(0.8, 1.0))
) # RandomResizedCrop
if self.cfg.augmentations.gaussian_noise.enabled:
augmentations.append(
tvf.GaussianNoise(
mean=self.cfg.augmentations.gaussian_noise.mean,
std=self.cfg.augmentations.gaussian_noise.std,
)
) # Gaussian noise
if self.cfg.augmentations.brightness_contrast.enabled:
augmentations.append(
tvf.ColorJitter(
brightness=self.cfg.augmentations.brightness_contrast.brightness_factor,
contrast=self.cfg.augmentations.brightness_contrast.contrast_factor,
saturation=0, # Keep saturation at 0 for brightness and contrast adjustment
hue=0,
)
) # Brightness and contrast adjustment
return tvf.Compose(augmentations)
def random_flip(self, image, cam, valid, seg_mask, flood_mask, conf_mask):
if torch.rand(1) < self.cfg.augmentations.random_flip:
image = torch.flip(image, [-1])
cam = cam.flip()
valid = torch.flip(valid, [-1])
seg_mask = torch.flip(seg_mask, [1])
flood_mask = torch.flip(flood_mask, [-1])
conf_mask = torch.flip(conf_mask, [-1])
return image, cam, valid, seg_mask, flood_mask, conf_mask
def get_view(self, idx, scene, seq, name, seed):
data = {
"index": idx,
"name": name,
"scene": scene,
"sequence": seq,
}
cam_dict = self.data["cameras"][scene][seq][self.data["camera_id"][idx]]
cam = Camera.from_dict(cam_dict).float()
if "roll_pitch_yaw" in self.data:
roll, pitch, yaw = self.data["roll_pitch_yaw"][idx].numpy()
else:
roll, pitch, yaw = decompose_rotmat(
self.data["R_c2w"][idx].numpy())
image = read_image(self.image_dirs[scene] / (name + self.image_ext))
image = Image.fromarray(image)
image = self.augmentations(image)
image = np.array(image)
if "plane_params" in self.data:
# transform the plane parameters from world to camera frames
plane_w = self.data["plane_params"][idx]
data["ground_plane"] = torch.cat(
[rotmat2d(deg2rad(torch.tensor(yaw)))
@ plane_w[:2], plane_w[2:]]
)
image, valid, cam, roll, pitch = self.process_image(
image, cam, roll, pitch, seed
)
if "chunk_index" in self.data: # TODO: (cherie) do we need this?
data["chunk_id"] = (scene, seq, self.data["chunk_index"][idx])
# Semantic map extraction
seg_mask_path = self.seg_mask_dirs[scene] / \
(name.split("_")[0] + ".npy")
seg_masks_ours = np.load(seg_mask_path)
mask_center = (
seg_masks_ours.shape[0] // 2, seg_masks_ours.shape[1] // 2)
seg_masks_ours = seg_masks_ours[mask_center[0] -
100:mask_center[0], mask_center[1] - 50: mask_center[1] + 50]
if self.cfg.num_classes == 6:
seg_masks_ours = seg_masks_ours[..., [0, 1, 2, 4, 6, 7]]
flood_mask_path = self.flood_masks_dirs[scene] / \
(name.split("_")[0] + ".npy")
flood_mask = np.load(flood_mask_path)
flood_mask = flood_mask[mask_center[0]-100:mask_center[0],
mask_center[1] - 50: mask_center[1] + 50]
confidence_map = flood_mask.copy()
confidence_map = (confidence_map - confidence_map.min()) / \
(confidence_map.max() - confidence_map.min() + 1e-6)
seg_masks_ours = torch.from_numpy(seg_masks_ours).float()
flood_mask = torch.from_numpy(flood_mask).float()
confidence_map = torch.from_numpy(confidence_map).float()
# Map Augmentations
with torch.random.fork_rng(devices=[]):
torch.manual_seed(seed)
image, cam, valid, seg_masks_ours, flood_mask, confidence_map = self.random_flip(
image, cam, valid, seg_masks_ours, flood_mask, confidence_map)
return {
**data,
"image": image,
"valid": valid,
"camera": cam,
"seg_masks": seg_masks_ours,
"flood_masks": flood_mask,
"roll_pitch_yaw": torch.tensor((roll, pitch, yaw)).float(),
"confidence_map": confidence_map
# "pixels_per_meter": torch.tensor(canvas.ppm).float(),
}
def process_image(self, image, cam, roll, pitch, seed):
image = (
torch.from_numpy(np.ascontiguousarray(image))
.permute(2, 0, 1)
.float()
.div_(255)
)
if not self.cfg.gravity_align:
# Turn off gravity alignment
roll = 0.0
pitch = 0.0
image, valid = rectify_image(image, cam, roll, pitch)
else:
image, valid = rectify_image(
image, cam, roll, pitch if self.cfg.rectify_pitch else None
)
roll = 0.0
if self.cfg.rectify_pitch:
pitch = 0.0
if self.cfg.target_focal_length is not None:
# Resize to a canonical focal length
factor = self.cfg.target_focal_length / cam.f.numpy()
size = (np.array(image.shape[-2:][::-1]) * factor).astype(int)
image, _, cam, valid = resize_image(
image, size, camera=cam, valid=valid)
size_out = self.cfg.resize_image
if size_out is None:
# Round the edges up such that they are multiple of a factor
stride = self.cfg.pad_to_multiple
size_out = (np.ceil((size / stride)) * stride).astype(int)
# Crop or pad such that both edges are of the given size
image, valid, cam = pad_image(
image, size_out, cam, valid, crop_and_center=True
)
elif self.cfg.resize_image is not None:
image, _, cam, valid = resize_image(
image, self.cfg.resize_image, fn=max, camera=cam, valid=valid
)
if self.cfg.pad_to_square:
# Pad such that both edges are of the given size
image, valid, cam = pad_image(
image, self.cfg.resize_image, cam, valid)
if self.cfg.reduce_fov is not None:
h, w = image.shape[-2:]
f = float(cam.f[0])
fov = np.arctan(w / f / 2)
w_new = round(2 * f * np.tan(self.cfg.reduce_fov * fov))
image, valid, cam = pad_image(
image, (w_new, h), cam, valid, crop_and_center=True
)
with torch.random.fork_rng(devices=[]):
torch.manual_seed(seed)
image = self.tfs(image)
return image, valid, cam, roll, pitch