File size: 9,375 Bytes
4187c6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from copy import deepcopy
from pathlib import Path
from typing import Any, Dict, List

import numpy as np
import torch
import torch.utils.data as torchdata
import torchvision.transforms as tvf
from PIL import Image
from pathlib import Path

from ...models.utils import deg2rad, rotmat2d
from ...utils.io import read_image
from ...utils.wrappers import Camera
from ..image import pad_image, rectify_image, resize_image
from ..utils import decompose_rotmat
from ..schema import MIADataConfiguration


class MapLocDataset(torchdata.Dataset):
    def __init__(
        self,
        stage: str,
        cfg: MIADataConfiguration,
        names: List[str],
        data: Dict[str, Any],
        image_dirs: Dict[str, Path],
        seg_mask_dirs: Dict[str, Path],
        flood_masks_dirs: Dict[str, Path],
        image_ext: str = "",
    ):
        self.stage = stage
        self.cfg = deepcopy(cfg)
        self.data = data
        self.image_dirs = image_dirs
        self.seg_mask_dirs = seg_mask_dirs
        self.flood_masks_dirs = flood_masks_dirs
        self.names = names
        self.image_ext = image_ext

        tfs = []
        self.tfs = tvf.Compose(tfs)
        self.augmentations = self.get_augmentations()

    def __len__(self):
        return len(self.names)

    def __getitem__(self, idx):
        if self.stage == "train" and self.cfg.random:
            seed = None
        else:
            seed = [self.cfg.seed, idx]
        (seed,) = np.random.SeedSequence(seed).generate_state(1)

        scene, seq, name = self.names[idx]

        view = self.get_view(
            idx, scene, seq, name, seed
        )

        return view

    def get_augmentations(self):
        if self.stage != "train" or not self.cfg.augmentations.enabled:
            print(f"No Augmentation!", "\n" * 10)
            self.cfg.augmentations.random_flip = 0.0
            return tvf.Compose([])

        print(f"Augmentation!", "\n" * 10)
        augmentations = [
            tvf.ColorJitter(
                brightness=self.cfg.augmentations.brightness,
                contrast=self.cfg.augmentations.contrast,
                saturation=self.cfg.augmentations.saturation,
                hue=self.cfg.augmentations.hue,
            )
        ]

        if self.cfg.augmentations.random_resized_crop:
            augmentations.append(
                tvf.RandomResizedCrop(scale=(0.8, 1.0))
            )  # RandomResizedCrop

        if self.cfg.augmentations.gaussian_noise.enabled:
            augmentations.append(
                tvf.GaussianNoise(
                    mean=self.cfg.augmentations.gaussian_noise.mean,
                    std=self.cfg.augmentations.gaussian_noise.std,
                )
            )  # Gaussian noise

        if self.cfg.augmentations.brightness_contrast.enabled:
            augmentations.append(
                tvf.ColorJitter(
                    brightness=self.cfg.augmentations.brightness_contrast.brightness_factor,
                    contrast=self.cfg.augmentations.brightness_contrast.contrast_factor,
                    saturation=0,  # Keep saturation at 0 for brightness and contrast adjustment
                    hue=0,
                )
            )  # Brightness and contrast adjustment

        return tvf.Compose(augmentations)

    def random_flip(self, image, cam, valid, seg_mask, flood_mask, conf_mask):
        if torch.rand(1) < self.cfg.augmentations.random_flip:
            image = torch.flip(image, [-1])
            cam = cam.flip()
            valid = torch.flip(valid, [-1])
            seg_mask = torch.flip(seg_mask, [1])
            flood_mask = torch.flip(flood_mask, [-1])
            conf_mask = torch.flip(conf_mask, [-1])

        return image, cam, valid, seg_mask, flood_mask, conf_mask

    def get_view(self, idx, scene, seq, name, seed):
        data = {
            "index": idx,
            "name": name,
            "scene": scene,
            "sequence": seq,
        }
        cam_dict = self.data["cameras"][scene][seq][self.data["camera_id"][idx]]
        cam = Camera.from_dict(cam_dict).float()

        if "roll_pitch_yaw" in self.data:
            roll, pitch, yaw = self.data["roll_pitch_yaw"][idx].numpy()
        else:
            roll, pitch, yaw = decompose_rotmat(
                self.data["R_c2w"][idx].numpy())

        image = read_image(self.image_dirs[scene] / (name + self.image_ext))
        image = Image.fromarray(image)
        image = self.augmentations(image)
        image = np.array(image)

        if "plane_params" in self.data:
            # transform the plane parameters from world to camera frames
            plane_w = self.data["plane_params"][idx]
            data["ground_plane"] = torch.cat(
                [rotmat2d(deg2rad(torch.tensor(yaw)))
                 @ plane_w[:2], plane_w[2:]]
            )

        image, valid, cam, roll, pitch = self.process_image(
            image, cam, roll, pitch, seed
        )

        if "chunk_index" in self.data:  # TODO: (cherie) do we need this?
            data["chunk_id"] = (scene, seq, self.data["chunk_index"][idx])

        # Semantic map extraction
        seg_mask_path = self.seg_mask_dirs[scene] / \
            (name.split("_")[0] + ".npy")
        seg_masks_ours = np.load(seg_mask_path)
        mask_center = (
            seg_masks_ours.shape[0] // 2, seg_masks_ours.shape[1] // 2)

        seg_masks_ours = seg_masks_ours[mask_center[0] -
                                        100:mask_center[0], mask_center[1] - 50: mask_center[1] + 50]

        if self.cfg.num_classes == 6:
            seg_masks_ours = seg_masks_ours[..., [0, 1, 2, 4, 6, 7]]

        flood_mask_path = self.flood_masks_dirs[scene] / \
            (name.split("_")[0] + ".npy")
        flood_mask = np.load(flood_mask_path)

        flood_mask = flood_mask[mask_center[0]-100:mask_center[0],
                                mask_center[1] - 50: mask_center[1] + 50]

        confidence_map = flood_mask.copy()
        confidence_map = (confidence_map - confidence_map.min()) / \
            (confidence_map.max() - confidence_map.min() + 1e-6)

        seg_masks_ours = torch.from_numpy(seg_masks_ours).float()
        flood_mask = torch.from_numpy(flood_mask).float()
        confidence_map = torch.from_numpy(confidence_map).float()

        # Map Augmentations
        with torch.random.fork_rng(devices=[]):
            torch.manual_seed(seed)
            image, cam, valid, seg_masks_ours, flood_mask, confidence_map = self.random_flip(
                image, cam, valid, seg_masks_ours, flood_mask, confidence_map)

        return {
            **data,
            "image": image,
            "valid": valid,
            "camera": cam,
            "seg_masks": seg_masks_ours,
            "flood_masks": flood_mask,
            "roll_pitch_yaw": torch.tensor((roll, pitch, yaw)).float(),
            "confidence_map": confidence_map
            # "pixels_per_meter": torch.tensor(canvas.ppm).float(),
        }

    def process_image(self, image, cam, roll, pitch, seed):
        image = (
            torch.from_numpy(np.ascontiguousarray(image))
            .permute(2, 0, 1)
            .float()
            .div_(255)
        )

        if not self.cfg.gravity_align:
            # Turn off gravity alignment
            roll = 0.0
            pitch = 0.0
            image, valid = rectify_image(image, cam, roll, pitch)
        else:
            image, valid = rectify_image(
                image, cam, roll, pitch if self.cfg.rectify_pitch else None
            )
            roll = 0.0
            if self.cfg.rectify_pitch:
                pitch = 0.0

        if self.cfg.target_focal_length is not None:
            # Resize to a canonical focal length
            factor = self.cfg.target_focal_length / cam.f.numpy()
            size = (np.array(image.shape[-2:][::-1]) * factor).astype(int)
            image, _, cam, valid = resize_image(
                image, size, camera=cam, valid=valid)
            size_out = self.cfg.resize_image
            if size_out is None:
                # Round the edges up such that they are multiple of a factor
                stride = self.cfg.pad_to_multiple
                size_out = (np.ceil((size / stride)) * stride).astype(int)
            # Crop or pad such that both edges are of the given size
            image, valid, cam = pad_image(
                image, size_out, cam, valid, crop_and_center=True
            )
        elif self.cfg.resize_image is not None:
            image, _, cam, valid = resize_image(
                image, self.cfg.resize_image, fn=max, camera=cam, valid=valid
            )
            if self.cfg.pad_to_square:
                # Pad such that both edges are of the given size
                image, valid, cam = pad_image(
                    image, self.cfg.resize_image, cam, valid)

        if self.cfg.reduce_fov is not None:
            h, w = image.shape[-2:]
            f = float(cam.f[0])
            fov = np.arctan(w / f / 2)
            w_new = round(2 * f * np.tan(self.cfg.reduce_fov * fov))
            image, valid, cam = pad_image(
                image, (w_new, h), cam, valid, crop_and_center=True
            )

        with torch.random.fork_rng(devices=[]):
            torch.manual_seed(seed)
            image = self.tfs(image)

        return image, valid, cam, roll, pitch