Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
"""01_clustering_methods.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/1mqAGInsaItbKYVUlP9muYz3fpdGBWFz5 | |
""" | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import sklearn.cluster as cluster | |
import colormaps as cmaps | |
import opinionated | |
plt.style.use("opinionated_rc") | |
from opinionated.core import download_googlefont | |
download_googlefont('Quicksand', add_to_cache=True) | |
plt.rc('font', family='Quicksand') | |
!wget https://github.com/scikit-learn-contrib/hdbscan/raw/master/notebooks/clusterable_data.npy | |
!wget https://github.com/mwaskom/seaborn-data/raw/master/penguins.csv | |
hdbscan_example_data = np.load('clusterable_data.npy') | |
penguins_dataset = pd.read_csv('penguins.csv')[['bill_length_mm','bill_depth_mm','flipper_length_mm']].dropna().values | |
from sklearn.preprocessing import StandardScaler | |
scaler = StandardScaler() | |
penguins_dataset_standardized = scaler.fit_transform(penguins_dataset) | |
import gradio as gr | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.datasets import make_blobs, make_moons, load_iris | |
import seaborn as sns | |
import pandas as pd | |
import matplotlib.colors as mcolors | |
from sklearn.cluster import KMeans | |
from sklearn.cluster import AgglomerativeClustering | |
from sklearn.mixture import GaussianMixture | |
import hdbscan | |
import genieclust | |
# Pre-defined datasets | |
blobs_X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0) | |
moons_X, _ = make_moons(n_samples=300, noise=0.05, random_state=0) | |
# Penguins dataset (3D example) | |
# For the purpose of this example, let's simulate the Penguins dataset with iris for simplicity | |
iris_X, _ = load_iris(return_X_y=True) | |
# Assuming iris_X to be a placeholder for the Penguins dataset with numerical features | |
datasets = { | |
"Blobs": blobs_X, | |
"Moons": moons_X, | |
"Penguins": penguins_dataset_standardized, # Placeholder for Penguins dataset | |
"hDBSCAN sample": hdbscan_example_data | |
} | |
# Function for plotting the unclustered dataset | |
def plot_unclustered(dataset_name): | |
X = datasets[dataset_name] # Fetch dataset from the dictionary | |
# Check if the dataset has more than 2 dimensions | |
if X.shape[1] > 2: | |
# Convert dataset to DataFrame for seaborn pairplot | |
df = pd.DataFrame(X) | |
fig = sns.pairplot(df, plot_kws={'color': 'grey','alpha':0.7}, diag_kws={'color': 'grey'}).fig | |
else: | |
fig, ax = plt.subplots(figsize=(8, 6)) | |
ax.scatter(X[:, 0], X[:, 1], color='gray', marker='.',alpha=.7) | |
ax.set_xlabel("Feature 1") | |
ax.set_ylabel("Feature 2") | |
ax.grid(True) | |
plt.tight_layout() | |
plt.close(fig) | |
return fig | |
def plot_clustered(dataset_name, clustering_method, kmeans_n_clusters, agg_n_clusters, agg_linkage, gmm_n_clusters, covariance_type, | |
genie_n_clusters, gini_threshold, M,hdbscan_min_cluster_size, hdbscan_min_samples): | |
X = datasets[dataset_name] | |
# Determine the clustering method and fit the model accordingly | |
if clustering_method == "K-Means": | |
model = KMeans(n_clusters=kmeans_n_clusters) | |
model.fit(X) | |
labels = model.labels_ # For K-Means, labels are in .labels_ | |
elif clustering_method == "Agglomerative": | |
model = AgglomerativeClustering(n_clusters=agg_n_clusters, linkage=agg_linkage) | |
model.fit(X) | |
labels = model.labels_ # For Agglomerative Clustering, labels are in .labels_ | |
elif clustering_method == "Gaussian Mixture": | |
model = GaussianMixture(n_components=gmm_n_clusters, covariance_type=covariance_type) | |
model.fit(X) | |
labels = model.predict(X) # For Gaussian Mixture, use .predict() to get labels | |
elif clustering_method == "Genie": | |
model = genieclust.Genie(n_clusters=genie_n_clusters, gini_threshold=gini_threshold, M=M) | |
labels = model.fit_predict(X) # GenieClust uses fit_predict directly for both fitting and label prediction | |
elif clustering_method == "h-DBSCAN": | |
clusterer = hdbscan.HDBSCAN(min_cluster_size=hdbscan_min_cluster_size, min_samples=hdbscan_min_samples).fit(X) | |
labels = clusterer.labels_ | |
n_clusters= len(np.unique([x for x in labels if x >= 0])) | |
if n_clusters <= 10: | |
original_cmap = cmaps.greenorange_12 | |
colors = original_cmap([x for x in range(n_clusters)]) | |
# Create a new listed colormap with the extracted colors | |
new_cmap = mcolors.ListedColormap(colors) | |
else: | |
new_cmap = cmaps.cet_g_bw_minc | |
cluster_colors = [new_cmap(x) if x >= 0 | |
else (0.5, 0.5, 0.5) | |
for x in labels] | |
# Check if the dataset has more than 2 dimensions | |
if X.shape[1] > 2: | |
# Convert dataset to DataFrame for seaborn pairplot | |
df = pd.DataFrame(X) | |
# df['cluster'] = labels | |
# fig = sns.pairplot(df, color = cluster_colors, cmap=new_cmap).fig | |
# Create bins for each variable | |
n_bins = 10 | |
bins = {column: np.linspace(df[column].min(), df[column].max(), n_bins+1) for column in df.columns} | |
# Create a figure and axes | |
n = len(df.columns) | |
fig, axes = plt.subplots(nrows=n, ncols=n, figsize=(n*2.3, n*2.3)) | |
for i in range(n): | |
for j in range(n): | |
ax = axes[i, j] | |
ax.grid(True, which='both', linestyle='--', linewidth=0.5) | |
if i != j: | |
ax.scatter(df[df.columns[j]], df[df.columns[i]], c=cluster_colors, alpha=0.8, marker='o',s = 10) | |
else: # Diagonal - Stacked Bar Charts | |
data = df[df.columns[i]] | |
counts = np.zeros((n_bins, n_clusters)) | |
for cluster in range(n_clusters): | |
cluster_data = data[labels == cluster] | |
hist, _ = np.histogram(cluster_data, bins=bins[df.columns[i]]) | |
counts[:, cluster] = hist | |
for cluster in range(n_clusters): | |
ax.bar(range(n_bins), counts[:, cluster], width=1, align='center', | |
bottom=np.sum(counts[:, :cluster], axis=1), color=cluster_colors[list(labels).index(cluster)] ) | |
# Explicit axis lines at the bottom and left | |
ax.spines['top'].set_visible(False) | |
ax.spines['right'].set_visible(False) | |
ax.spines['bottom'].set_visible(True) | |
ax.spines['left'].set_visible(True) | |
# Hide axis marks for inner plots and adjust label size | |
if i < n - 1: | |
ax.tick_params(labelbottom=False) # Hide x-axis labels for all but bottom row | |
else: | |
ax.tick_params(axis='x', labelsize=8) # Smaller labels for x-axis | |
if j > 0: | |
ax.tick_params(labelleft=False) # Hide y-axis labels for all but first column | |
else: | |
ax.tick_params(axis='y', labelsize=8) # Smaller labels for y-axis | |
# Set labels for outer plots only | |
if i == n - 1: | |
ax.set_xlabel(df.columns[j], rotation=0, fontsize=12) | |
if j == 0: | |
ax.set_ylabel(df.columns[i], fontsize=12) | |
else: | |
fig, ax = plt.subplots(figsize=(8, 6)) | |
ax.scatter(X[:, 0], X[:, 1], c=cluster_colors, marker='.') | |
ax.grid(True) | |
plt.tight_layout() | |
plt.close(fig) | |
return fig | |
intro_md = """ | |
# Cluster-algorithm-explorer | |
_by [Max Noichl](https://homepage.univie.ac.at/maximilian.noichl/), for the clustering & data-visualization-workshop, Bremen, 2024_ | |
Below you can test a number of clustering-algorithms on several easier and harder datasets. | |
""" | |
# Gradio interface setup remains the same | |
with gr.Blocks(theme=gr.themes.Monochrome()) as demo: | |
with gr.Column(): | |
gr.Markdown(intro_md) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("# Choose your dataset:") | |
dataset_dropdown = gr.Dropdown(label="Select a dataset", choices=list(datasets.keys()), value="Blobs") | |
gr.Markdown("# Choose your Clustering algorithm & Parameters:") | |
# Update the dropdown for clustering method to include "Genie" | |
clustering_method_dropdown = gr.Dropdown(label="Select a clustering method", choices=["K-Means", "Agglomerative", "Gaussian Mixture", "Genie", "h-DBSCAN"], value="K-Means") | |
# K-Means parameters | |
with gr.Group(visible=True) as kmeans_params_group: | |
kmeans_n_clusters_slider = gr.Slider(minimum=2, maximum=10, step=1, label="Number of Clusters (K-Means)", value=4) | |
# Agglomerative Clustering parameters | |
with gr.Group(visible=False) as agglomerative_params_group: | |
agg_n_clusters_slider = gr.Slider(minimum=2, maximum=10, step=1, label="Number of Clusters (Agglomerative)", value=4) | |
agg_linkage_dropdown = gr.Dropdown(label="Linkage Type", choices=["ward", "complete", "average", "single"], value="ward") | |
# Gaussian Mixture Model parameters | |
with gr.Group(visible=False) as gmm_params_group: | |
gmm_n_clusters_slider = gr.Slider(minimum=2, maximum=10, step=1, label="Number of Components (GMM)", value=4) | |
covariance_type_dropdown = gr.Dropdown(label="Covariance Type", choices=["full", "tied", "diag", "spherical"], value="full") | |
# GenieClust parameters | |
with gr.Group(visible=False) as genie_params_group: | |
genie_n_clusters_slider = gr.Slider(minimum=2, maximum=10, step=1, label="Number of Clusters (Genie)", value=4) | |
gini_threshold_slider = gr.Slider(minimum=0.0, maximum=1.05, step=0.05, label="Gini Threshold (Genie)", value=.3) | |
M_slider = gr.Slider(minimum=0.5, maximum=2.0, step=0.1, label="M Parameter (Genie)", value=1.0) | |
with gr.Group(visible=False) as hdbscan_params_group: | |
hdbscan_min_cluster_size = gr.Slider(minimum=2, maximum=200, step=1, label="Minimal Cluster Size (hDBSCAN)", value=10) | |
hdbscan_min_samples = gr.Slider(minimum=2, maximum=200, step=1, label="Min. Samples (hDBSCAN)", value=10) | |
# Update the function that changes visible parameter groups based on selected clustering method | |
def update_method_params(clustering_method): | |
return { | |
kmeans_params_group: gr.Group(visible=clustering_method == "K-Means"), | |
agglomerative_params_group: gr.Group(visible=clustering_method == "Agglomerative"), | |
gmm_params_group: gr.Group(visible=clustering_method == "Gaussian Mixture"), | |
genie_params_group: gr.Group(visible=clustering_method == "Genie"), | |
hdbscan_params_group: gr.Group(visible=clustering_method == "h-DBSCAN"), | |
} | |
clustering_method_dropdown.change(update_method_params, inputs=[clustering_method_dropdown], outputs=[kmeans_params_group, agglomerative_params_group, | |
gmm_params_group, genie_params_group,hdbscan_params_group]) | |
button = gr.Button("Run Clustering!") | |
with gr.Column(): | |
unclustered_plot_output = gr.Plot(label=None) | |
clustered_plot_output = gr.Plot(label=None) | |
dataset_dropdown.change(plot_unclustered, inputs=[dataset_dropdown], outputs=[unclustered_plot_output]) | |
demo.load(plot_unclustered, inputs=[dataset_dropdown], outputs=[unclustered_plot_output]) | |
# Update the button click event to include new parameters for GenieClust | |
button.click( | |
plot_clustered, | |
inputs=[ | |
dataset_dropdown, | |
clustering_method_dropdown, | |
kmeans_n_clusters_slider, | |
agg_n_clusters_slider, | |
agg_linkage_dropdown, | |
gmm_n_clusters_slider, | |
covariance_type_dropdown, | |
genie_n_clusters_slider, # Add Genie parameters | |
gini_threshold_slider, | |
M_slider, | |
hdbscan_min_cluster_size, | |
hdbscan_min_samples | |
], | |
outputs=[clustered_plot_output] | |
) | |
if __name__ == "__main__": | |
demo.launch(debug=True) | |