Spaces:
Runtime error
Runtime error
File size: 12,564 Bytes
c40a6e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
# -*- coding: utf-8 -*-
"""01_clustering_methods.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1mqAGInsaItbKYVUlP9muYz3fpdGBWFz5
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn.cluster as cluster
import colormaps as cmaps
import opinionated
plt.style.use("opinionated_rc")
from opinionated.core import download_googlefont
download_googlefont('Quicksand', add_to_cache=True)
plt.rc('font', family='Quicksand')
!wget https://github.com/scikit-learn-contrib/hdbscan/raw/master/notebooks/clusterable_data.npy
!wget https://github.com/mwaskom/seaborn-data/raw/master/penguins.csv
hdbscan_example_data = np.load('clusterable_data.npy')
penguins_dataset = pd.read_csv('penguins.csv')[['bill_length_mm','bill_depth_mm','flipper_length_mm']].dropna().values
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
penguins_dataset_standardized = scaler.fit_transform(penguins_dataset)
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs, make_moons, load_iris
import seaborn as sns
import pandas as pd
import matplotlib.colors as mcolors
from sklearn.cluster import KMeans
from sklearn.cluster import AgglomerativeClustering
from sklearn.mixture import GaussianMixture
import hdbscan
import genieclust
# Pre-defined datasets
blobs_X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)
moons_X, _ = make_moons(n_samples=300, noise=0.05, random_state=0)
# Penguins dataset (3D example)
# For the purpose of this example, let's simulate the Penguins dataset with iris for simplicity
iris_X, _ = load_iris(return_X_y=True)
# Assuming iris_X to be a placeholder for the Penguins dataset with numerical features
datasets = {
"Blobs": blobs_X,
"Moons": moons_X,
"Penguins": penguins_dataset_standardized, # Placeholder for Penguins dataset
"hDBSCAN sample": hdbscan_example_data
}
# Function for plotting the unclustered dataset
def plot_unclustered(dataset_name):
X = datasets[dataset_name] # Fetch dataset from the dictionary
# Check if the dataset has more than 2 dimensions
if X.shape[1] > 2:
# Convert dataset to DataFrame for seaborn pairplot
df = pd.DataFrame(X)
fig = sns.pairplot(df, plot_kws={'color': 'grey','alpha':0.7}, diag_kws={'color': 'grey'}).fig
else:
fig, ax = plt.subplots(figsize=(8, 6))
ax.scatter(X[:, 0], X[:, 1], color='gray', marker='.',alpha=.7)
ax.set_xlabel("Feature 1")
ax.set_ylabel("Feature 2")
ax.grid(True)
plt.tight_layout()
plt.close(fig)
return fig
def plot_clustered(dataset_name, clustering_method, kmeans_n_clusters, agg_n_clusters, agg_linkage, gmm_n_clusters, covariance_type,
genie_n_clusters, gini_threshold, M,hdbscan_min_cluster_size, hdbscan_min_samples):
X = datasets[dataset_name]
# Determine the clustering method and fit the model accordingly
if clustering_method == "K-Means":
model = KMeans(n_clusters=kmeans_n_clusters)
model.fit(X)
labels = model.labels_ # For K-Means, labels are in .labels_
elif clustering_method == "Agglomerative":
model = AgglomerativeClustering(n_clusters=agg_n_clusters, linkage=agg_linkage)
model.fit(X)
labels = model.labels_ # For Agglomerative Clustering, labels are in .labels_
elif clustering_method == "Gaussian Mixture":
model = GaussianMixture(n_components=gmm_n_clusters, covariance_type=covariance_type)
model.fit(X)
labels = model.predict(X) # For Gaussian Mixture, use .predict() to get labels
elif clustering_method == "Genie":
model = genieclust.Genie(n_clusters=genie_n_clusters, gini_threshold=gini_threshold, M=M)
labels = model.fit_predict(X) # GenieClust uses fit_predict directly for both fitting and label prediction
elif clustering_method == "h-DBSCAN":
clusterer = hdbscan.HDBSCAN(min_cluster_size=hdbscan_min_cluster_size, min_samples=hdbscan_min_samples).fit(X)
labels = clusterer.labels_
n_clusters= len(np.unique([x for x in labels if x >= 0]))
if n_clusters <= 10:
original_cmap = cmaps.greenorange_12
colors = original_cmap([x for x in range(n_clusters)])
# Create a new listed colormap with the extracted colors
new_cmap = mcolors.ListedColormap(colors)
else:
new_cmap = cmaps.cet_g_bw_minc
cluster_colors = [new_cmap(x) if x >= 0
else (0.5, 0.5, 0.5)
for x in labels]
# Check if the dataset has more than 2 dimensions
if X.shape[1] > 2:
# Convert dataset to DataFrame for seaborn pairplot
df = pd.DataFrame(X)
# df['cluster'] = labels
# fig = sns.pairplot(df, color = cluster_colors, cmap=new_cmap).fig
# Create bins for each variable
n_bins = 10
bins = {column: np.linspace(df[column].min(), df[column].max(), n_bins+1) for column in df.columns}
# Create a figure and axes
n = len(df.columns)
fig, axes = plt.subplots(nrows=n, ncols=n, figsize=(n*2.3, n*2.3))
for i in range(n):
for j in range(n):
ax = axes[i, j]
ax.grid(True, which='both', linestyle='--', linewidth=0.5)
if i != j:
ax.scatter(df[df.columns[j]], df[df.columns[i]], c=cluster_colors, alpha=0.8, marker='o',s = 10)
else: # Diagonal - Stacked Bar Charts
data = df[df.columns[i]]
counts = np.zeros((n_bins, n_clusters))
for cluster in range(n_clusters):
cluster_data = data[labels == cluster]
hist, _ = np.histogram(cluster_data, bins=bins[df.columns[i]])
counts[:, cluster] = hist
for cluster in range(n_clusters):
ax.bar(range(n_bins), counts[:, cluster], width=1, align='center',
bottom=np.sum(counts[:, :cluster], axis=1), color=cluster_colors[list(labels).index(cluster)] )
# Explicit axis lines at the bottom and left
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(True)
ax.spines['left'].set_visible(True)
# Hide axis marks for inner plots and adjust label size
if i < n - 1:
ax.tick_params(labelbottom=False) # Hide x-axis labels for all but bottom row
else:
ax.tick_params(axis='x', labelsize=8) # Smaller labels for x-axis
if j > 0:
ax.tick_params(labelleft=False) # Hide y-axis labels for all but first column
else:
ax.tick_params(axis='y', labelsize=8) # Smaller labels for y-axis
# Set labels for outer plots only
if i == n - 1:
ax.set_xlabel(df.columns[j], rotation=0, fontsize=12)
if j == 0:
ax.set_ylabel(df.columns[i], fontsize=12)
else:
fig, ax = plt.subplots(figsize=(8, 6))
ax.scatter(X[:, 0], X[:, 1], c=cluster_colors, marker='.')
ax.grid(True)
plt.tight_layout()
plt.close(fig)
return fig
intro_md = """
# Cluster-algorithm-explorer
_by [Max Noichl](https://homepage.univie.ac.at/maximilian.noichl/), for the clustering & data-visualization-workshop, Bremen, 2024_
Below you can test a number of clustering-algorithms on several easier and harder datasets.
"""
# Gradio interface setup remains the same
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
with gr.Column():
gr.Markdown(intro_md)
with gr.Row():
with gr.Column():
gr.Markdown("# Choose your dataset:")
dataset_dropdown = gr.Dropdown(label="Select a dataset", choices=list(datasets.keys()), value="Blobs")
gr.Markdown("# Choose your Clustering algorithm & Parameters:")
# Update the dropdown for clustering method to include "Genie"
clustering_method_dropdown = gr.Dropdown(label="Select a clustering method", choices=["K-Means", "Agglomerative", "Gaussian Mixture", "Genie", "h-DBSCAN"], value="K-Means")
# K-Means parameters
with gr.Group(visible=True) as kmeans_params_group:
kmeans_n_clusters_slider = gr.Slider(minimum=2, maximum=10, step=1, label="Number of Clusters (K-Means)", value=4)
# Agglomerative Clustering parameters
with gr.Group(visible=False) as agglomerative_params_group:
agg_n_clusters_slider = gr.Slider(minimum=2, maximum=10, step=1, label="Number of Clusters (Agglomerative)", value=4)
agg_linkage_dropdown = gr.Dropdown(label="Linkage Type", choices=["ward", "complete", "average", "single"], value="ward")
# Gaussian Mixture Model parameters
with gr.Group(visible=False) as gmm_params_group:
gmm_n_clusters_slider = gr.Slider(minimum=2, maximum=10, step=1, label="Number of Components (GMM)", value=4)
covariance_type_dropdown = gr.Dropdown(label="Covariance Type", choices=["full", "tied", "diag", "spherical"], value="full")
# GenieClust parameters
with gr.Group(visible=False) as genie_params_group:
genie_n_clusters_slider = gr.Slider(minimum=2, maximum=10, step=1, label="Number of Clusters (Genie)", value=4)
gini_threshold_slider = gr.Slider(minimum=0.0, maximum=1.05, step=0.05, label="Gini Threshold (Genie)", value=.3)
M_slider = gr.Slider(minimum=0.5, maximum=2.0, step=0.1, label="M Parameter (Genie)", value=1.0)
with gr.Group(visible=False) as hdbscan_params_group:
hdbscan_min_cluster_size = gr.Slider(minimum=2, maximum=200, step=1, label="Minimal Cluster Size (hDBSCAN)", value=10)
hdbscan_min_samples = gr.Slider(minimum=2, maximum=200, step=1, label="Min. Samples (hDBSCAN)", value=10)
# Update the function that changes visible parameter groups based on selected clustering method
def update_method_params(clustering_method):
return {
kmeans_params_group: gr.Group(visible=clustering_method == "K-Means"),
agglomerative_params_group: gr.Group(visible=clustering_method == "Agglomerative"),
gmm_params_group: gr.Group(visible=clustering_method == "Gaussian Mixture"),
genie_params_group: gr.Group(visible=clustering_method == "Genie"),
hdbscan_params_group: gr.Group(visible=clustering_method == "h-DBSCAN"),
}
clustering_method_dropdown.change(update_method_params, inputs=[clustering_method_dropdown], outputs=[kmeans_params_group, agglomerative_params_group,
gmm_params_group, genie_params_group,hdbscan_params_group])
button = gr.Button("Run Clustering!")
with gr.Column():
unclustered_plot_output = gr.Plot(label=None)
clustered_plot_output = gr.Plot(label=None)
dataset_dropdown.change(plot_unclustered, inputs=[dataset_dropdown], outputs=[unclustered_plot_output])
demo.load(plot_unclustered, inputs=[dataset_dropdown], outputs=[unclustered_plot_output])
# Update the button click event to include new parameters for GenieClust
button.click(
plot_clustered,
inputs=[
dataset_dropdown,
clustering_method_dropdown,
kmeans_n_clusters_slider,
agg_n_clusters_slider,
agg_linkage_dropdown,
gmm_n_clusters_slider,
covariance_type_dropdown,
genie_n_clusters_slider, # Add Genie parameters
gini_threshold_slider,
M_slider,
hdbscan_min_cluster_size,
hdbscan_min_samples
],
outputs=[clustered_plot_output]
)
if __name__ == "__main__":
demo.launch(debug=True)
|