Spaces:
Running
Running
from dataclasses import dataclass, make_dataclass | |
from enum import Enum | |
import pandas as pd | |
from src.about import HarnessTasks | |
from src.about import ClinicalTypes | |
def fields(raw_class): | |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
# These classes are for user facing column names, | |
# to avoid having to change them all around the code | |
# when a modif is needed | |
class ColumnContent: | |
name: str | |
type: str | |
displayed_by_default: bool | |
hidden: bool = False | |
never_hidden: bool = False | |
dataset_task_col: bool = False | |
clinical_type_col: bool = False | |
## Leaderboard columns | |
auto_eval_column_dict = [] | |
# Init | |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) | |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) | |
# Scores | |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True)]) | |
for task in HarnessTasks: | |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False, dataset_task_col=True)]) | |
# Model information | |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) | |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) | |
auto_eval_column_dict.append(["backbone", ColumnContent, ColumnContent("Base Model", "str", False)]) | |
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) | |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False, True)]) | |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) | |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) | |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False, True)]) | |
auto_eval_column_dict.append( | |
["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, True)] | |
) | |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)]) | |
# We use make dataclass to dynamically fill the scores from Tasks | |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
## For the queue columns in the submission tab | |
class EvalQueueColumn: # Queue column | |
model = ColumnContent("model", "markdown", True) | |
revision = ColumnContent("revision", "str", True) | |
private = ColumnContent("private", "bool", True) | |
model_type = ColumnContent("model_type", "str", True) | |
precision = ColumnContent("precision", "str", True) | |
weight_type = ColumnContent("weight_type", "str", "Original") | |
status = ColumnContent("status", "str", True) | |
## All the model information that we might need | |
class ModelDetails: | |
name: str | |
display_name: str = "" | |
symbol: str = "" # emoji | |
class ModelType(Enum): | |
# ZEROSHOT = ModelDetails(name="zero-shot", symbol="β«") | |
# FINETUNED = ModelDetails(name="fine-tuned", symbol="βͺ") | |
PT = ModelDetails(name="pretrained", symbol="π’") | |
# FT = ModelDetails(name="fine-tuned", symbol="πΆ") | |
# DS = ModelDetails(name="domain-specific", symbol="β") | |
IFT = ModelDetails(name="instruction-tuned", symbol="β") | |
RL = ModelDetails(name="preference-tuned", symbol="π¦") | |
Unknown = ModelDetails(name="", symbol="?") | |
def to_str(self, separator=" "): | |
return f"{self.value.symbol}{separator}{self.value.name}" | |
def from_str(type): | |
# if "zero-shot" in type or "β«" in type: | |
# return ModelType.ZEROSHOT | |
# if "fine-tuned" in type or "βͺ" in type: | |
# return ModelType.FINETUNED | |
# if "fine-tuned" in type or "πΆ" in type: | |
# return ModelType.FT | |
if "pretrained" in type or "π’" in type: | |
return ModelType.PT | |
# if "RL-tuned" in type or "π¦" in type: | |
# return ModelType.RL | |
if "instruction-tuned" in type or "β" in type: | |
return ModelType.IFT | |
# if "domain-specific" in type or "β" in type: | |
# return ModelType.DS | |
return ModelType.Unknown | |
class ModelArch(Enum): | |
Encoder = ModelDetails("Encoder") | |
Decoder = ModelDetails("Decoder") | |
GLiNEREncoder = ModelDetails("GLiNER Encoder") | |
Unknown = ModelDetails(name="Other", symbol="?") | |
def to_str(self, separator=" "): | |
return f"{self.value.name}" | |
def from_str(type): | |
if "Encoder" == type: | |
return ModelArch.Encoder | |
if "Decoder" == type: | |
return ModelArch.Decoder | |
if "GLiNER Encoder" == type: | |
return ModelArch.GLiNEREncoder | |
# if "unknown" in type: | |
# return ModelArch.Unknown | |
return ModelArch.Unknown | |
class WeightType(Enum): | |
Adapter = ModelDetails("Adapter") | |
Original = ModelDetails("Original") | |
Delta = ModelDetails("Delta") | |
class Precision(Enum): | |
float16 = ModelDetails("float16") | |
bfloat16 = ModelDetails("bfloat16") | |
float32 = ModelDetails("float32") | |
# qt_8bit = ModelDetails("8bit") | |
# qt_4bit = ModelDetails("4bit") | |
# qt_GPTQ = ModelDetails("GPTQ") | |
Unknown = ModelDetails("?") | |
def from_str(precision): | |
if precision in ["torch.float16", "float16"]: | |
return Precision.float16 | |
if precision in ["torch.bfloat16", "bfloat16"]: | |
return Precision.bfloat16 | |
if precision in ["float32"]: | |
return Precision.float32 | |
# if precision in ["8bit"]: | |
# return Precision.qt_8bit | |
# if precision in ["4bit"]: | |
# return Precision.qt_4bit | |
# if precision in ["GPTQ", "None"]: | |
# return Precision.qt_GPTQ | |
return Precision.Unknown | |
class PromptTemplateName(Enum): | |
UniversalNERTemplate = "universal_ner" | |
LLMHTMLHighlightedSpansTemplate = "llm_html_highlighted_spans" | |
LLMHTMLHighlightedSpansTemplateV1 = "llm_html_highlighted_spans_v1" | |
LLamaNERTemplate = "llama_70B_ner" | |
# MixtralNERTemplate = "mixtral_ner_v0.3" | |
class EvaluationMetrics(Enum): | |
SpanBased = "Span Based" | |
TokenBased = "Token Based" | |
# Column selection | |
DATASET_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.clinical_type_col] | |
Clinical_TYPES_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.dataset_task_col] | |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] | |
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] | |
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] | |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
DATASET_BENCHMARK_COLS = [t.value.col_name for t in HarnessTasks] | |
TYPES_BENCHMARK_COLS = [t.value.col_name for t in ClinicalTypes] | |
NUMERIC_INTERVALS = { | |
"?": pd.Interval(-1, 0, closed="right"), | |
"~1.5": pd.Interval(0, 2, closed="right"), | |
"~3": pd.Interval(2, 4, closed="right"), | |
"~7": pd.Interval(4, 9, closed="right"), | |
"~13": pd.Interval(9, 20, closed="right"), | |
"~35": pd.Interval(20, 45, closed="right"), | |
"~60": pd.Interval(45, 70, closed="right"), | |
"70+": pd.Interval(70, 10000, closed="right"), | |
} | |