Spaces:
Running
Running
File size: 7,528 Bytes
9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 b3eff40 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 b3eff40 9ae8d89 b3eff40 9ae8d89 b3eff40 09b313f b3eff40 09b313f b3eff40 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f 9ae8d89 09b313f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
from src.about import HarnessTasks
from src.about import ClinicalTypes
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
dataset_task_col: bool = False
clinical_type_col: bool = False
## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
# Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True)])
for task in HarnessTasks:
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False, dataset_task_col=True)])
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["backbone", ColumnContent, ColumnContent("Base Model", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False, True)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False, True)])
auto_eval_column_dict.append(
["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, True)]
)
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
private = ColumnContent("private", "bool", True)
model_type = ColumnContent("model_type", "str", True)
precision = ColumnContent("precision", "str", True)
weight_type = ColumnContent("weight_type", "str", "Original")
status = ColumnContent("status", "str", True)
## All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class ModelType(Enum):
# ZEROSHOT = ModelDetails(name="zero-shot", symbol="β«")
# FINETUNED = ModelDetails(name="fine-tuned", symbol="βͺ")
PT = ModelDetails(name="pretrained", symbol="π’")
# FT = ModelDetails(name="fine-tuned", symbol="πΆ")
# DS = ModelDetails(name="domain-specific", symbol="β")
IFT = ModelDetails(name="instruction-tuned", symbol="β")
RL = ModelDetails(name="preference-tuned", symbol="π¦")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
# if "zero-shot" in type or "β«" in type:
# return ModelType.ZEROSHOT
# if "fine-tuned" in type or "βͺ" in type:
# return ModelType.FINETUNED
# if "fine-tuned" in type or "πΆ" in type:
# return ModelType.FT
if "pretrained" in type or "π’" in type:
return ModelType.PT
# if "RL-tuned" in type or "π¦" in type:
# return ModelType.RL
if "instruction-tuned" in type or "β" in type:
return ModelType.IFT
# if "domain-specific" in type or "β" in type:
# return ModelType.DS
return ModelType.Unknown
class ModelArch(Enum):
Encoder = ModelDetails("Encoder")
Decoder = ModelDetails("Decoder")
GLiNEREncoder = ModelDetails("GLiNER Encoder")
Unknown = ModelDetails(name="Other", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.name}"
@staticmethod
def from_str(type):
if "Encoder" == type:
return ModelArch.Encoder
if "Decoder" == type:
return ModelArch.Decoder
if "GLiNER Encoder" == type:
return ModelArch.GLiNEREncoder
# if "unknown" in type:
# return ModelArch.Unknown
return ModelArch.Unknown
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
float32 = ModelDetails("float32")
# qt_8bit = ModelDetails("8bit")
# qt_4bit = ModelDetails("4bit")
# qt_GPTQ = ModelDetails("GPTQ")
Unknown = ModelDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
if precision in ["float32"]:
return Precision.float32
# if precision in ["8bit"]:
# return Precision.qt_8bit
# if precision in ["4bit"]:
# return Precision.qt_4bit
# if precision in ["GPTQ", "None"]:
# return Precision.qt_GPTQ
return Precision.Unknown
class PromptTemplateName(Enum):
UniversalNERTemplate = "universal_ner"
LLMHTMLHighlightedSpansTemplate = "llm_html_highlighted_spans"
LLMHTMLHighlightedSpansTemplateV1 = "llm_html_highlighted_spans_v1"
LLamaNERTemplate = "llama_70B_ner"
# MixtralNERTemplate = "mixtral_ner_v0.3"
class EvaluationMetrics(Enum):
SpanBased = "Span Based"
TokenBased = "Token Based"
# Column selection
DATASET_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.clinical_type_col]
Clinical_TYPES_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.dataset_task_col]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
DATASET_BENCHMARK_COLS = [t.value.col_name for t in HarnessTasks]
TYPES_BENCHMARK_COLS = [t.value.col_name for t in ClinicalTypes]
NUMERIC_INTERVALS = {
"?": pd.Interval(-1, 0, closed="right"),
"~1.5": pd.Interval(0, 2, closed="right"),
"~3": pd.Interval(2, 4, closed="right"),
"~7": pd.Interval(4, 9, closed="right"),
"~13": pd.Interval(9, 20, closed="right"),
"~35": pd.Interval(20, 45, closed="right"),
"~60": pd.Interval(45, 70, closed="right"),
"70+": pd.Interval(70, 10000, closed="right"),
}
|