File size: 13,704 Bytes
9ae8d89
 
 
 
 
0a14325
20dad4a
 
3df6003
 
9ae8d89
 
 
 
 
 
 
 
 
 
0a14325
9ae8d89
 
 
 
0da5ee3
9ae8d89
09b313f
0da5ee3
 
553b217
 
 
20dad4a
09b313f
9ae8d89
 
 
 
d8147b8
9ae8d89
 
d8147b8
20dad4a
c92b14d
09b313f
0da5ee3
 
 
0a14325
 
ba515db
 
 
 
553b217
 
 
 
 
 
20dad4a
 
 
d8147b8
 
 
9ae8d89
d8147b8
 
9ae8d89
d8147b8
9ae8d89
d8147b8
 
 
9ae8d89
 
 
 
09b313f
9ae8d89
0a14325
9ae8d89
 
 
 
 
b3eff40
 
 
d86ca68
 
0a14325
553b217
 
20dad4a
 
09b313f
9ae8d89
 
 
 
 
09b313f
9ae8d89
 
 
b3eff40
 
9ae8d89
b3eff40
d8147b8
b3eff40
 
9ae8d89
 
 
 
 
 
 
b3eff40
 
 
 
09b313f
 
b3eff40
 
e1cdc4b
 
b3eff40
 
d8147b8
b3eff40
9ae8d89
 
09b313f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae8d89
 
 
 
d8147b8
 
 
 
 
 
 
 
 
 
09b313f
9ae8d89
671e1a6
9ae8d89
 
09b313f
 
 
 
9ae8d89
 
 
671e1a6
 
9ae8d89
 
 
 
09b313f
 
 
 
 
 
 
 
9ae8d89
 
09b313f
 
 
 
 
 
 
 
 
 
 
 
 
9ae8d89
0a14325
 
 
 
553b217
 
 
20dad4a
 
553b217
0a14325
 
 
 
0da5ee3
09b313f
 
 
9ae8d89
 
 
 
0a14325
09b313f
0da5ee3
0a14325
553b217
 
 
20dad4a
 
0da5ee3
09b313f
 
6616540
09b313f
 
 
 
 
 
 
 
3df6003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

# changes to be made here
from src.about import HarnessTasks, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns, ClosedEndedArabicColumns
from src.envs import PRIVATE_REPO
import json
import gradio as gr

def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    # changes to be made here
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    invariant: bool = True
    never_hidden: bool = False
    dataset_task_col: bool = False
    open_ended_col: bool = False
    med_safety_col: bool = False
    medical_summarization_col: bool = False
    aci_col: bool = False
    soap_col: bool = False
    closed_ended_arabic_col: bool = False


## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict = []
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True, False, dataset_task_col=True, closed_ended_arabic_col=True, invariant=False)])
auto_eval_column_dict.append(["overall", ColumnContent, ColumnContent("Overall Score", "number", True, False, medical_summarization_col=True, aci_col=True, soap_col=True, invariant=False)])
for task in HarnessTasks:
    auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False, dataset_task_col=True, invariant=False)])
for column in OpenEndedColumns:
    auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_col=True, invariant=False)])
# changes to be made here
for column in MedSafetyColumns:
    if column.value.col_name == "95% CI" or column.value.col_name == "Harmfulness Score":
        auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, med_safety_col=True, invariant=False)])
    else:
        auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", False, False, med_safety_col=True, invariant=False)])
for column in MedicalSummarizationColumns:
    auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, medical_summarization_col=True, invariant=False)])
for column in ACIColumns:
    auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, aci_col=True, invariant=False)])
for column in SOAPColumns:
    auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, soap_col=True, invariant=False)])
# if PRIVATE_REPO:
for column in ClosedEndedArabicColumns:
    auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, closed_ended_arabic_col=True, invariant=False)])
auto_eval_column_dict.append(["is_domain_specific", ColumnContent, ColumnContent("Is Domain Specific", "bool", False)])
auto_eval_column_dict.append(["use_chat_template", ColumnContent, ColumnContent("Uses Chat Template", "bool", False)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False)])
# auto_eval_column_dict.append(["backbone", ColumnContent, ColumnContent("Base Model", "str", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❀️", "number", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, True)])
# auto_eval_column_dict.append(["display_result", ColumnContent, ColumnContent("Display Result", "bool", False, True)])
auto_eval_column_dict.append(["date", ColumnContent, ColumnContent("Submission Date", "str", False)])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)


## For the queue columns in the submission tab
# changes to be made here
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    model_type = ColumnContent("model_type", "str", True)
    precision = ColumnContent("precision", "str", True)
    weight_type = ColumnContent("weight_type", "str", "Original")
    closed_ended_status = ColumnContent("closed_ended_status", "str", True)
    open_ended_status = ColumnContent("open_ended_status", "str", True)
    med_safety_status = ColumnContent("med_safety_status", "str", True)
    medical_summarization_status = ColumnContent("medical_summarization_status", "str", True)
    note_generation_status = ColumnContent("note_generation_status", "str", True)
    if PRIVATE_REPO:
        closed_ended_arabic_status = ColumnContent("closed_ended_arabic_status", "str", True)

## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = ""  # emoji


class ModelType(Enum):
    # ZEROSHOT = ModelDetails(name="zero-shot", symbol="⚫")
    # FINETUNED = ModelDetails(name="fine-tuned", symbol="βšͺ")
    PT = ModelDetails(name="pretrained", symbol="🟒")
    # FT = ModelDetails(name="fine-tuned", symbol="πŸ”Ά")
    # DS = ModelDetails(name="domain-specific", symbol="πŸ₯")
    IFT = ModelDetails(name="instruction-tuned", symbol="β­•")
    RL = ModelDetails(name="preference-tuned", symbol="🟦")
    Unknown = ModelDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        # if "zero-shot" in type or "⚫" in type:
        #     return ModelType.ZEROSHOT
        # if "fine-tuned" in type or "βšͺ" in type:
        #     return ModelType.FINETUNED
        # if "fine-tuned" in type or "πŸ”Ά" in type:
        #     return ModelType.FT
        if "pretrained" in type or "🟒" in type:
            return ModelType.PT
        if "preference-tuned" in type or "🟦" in type:
            return ModelType.RL
        if "instruction-tuned" in type or "β­•" in type:
            return ModelType.IFT
        # if "domain-specific" in type or "πŸ₯" in type:
        #     return ModelType.DS
        return ModelType.Unknown

class ModelArch(Enum):
    Encoder = ModelDetails("Encoder")
    Decoder = ModelDetails("Decoder")
    GLiNEREncoder = ModelDetails("GLiNER Encoder")
    Unknown = ModelDetails(name="Other", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.name}"

    @staticmethod
    def from_str(type):
        if "Encoder" == type:
            return ModelArch.Encoder
        if "Decoder" == type:
            return ModelArch.Decoder
        if "GLiNER Encoder" == type:
            return ModelArch.GLiNEREncoder
        # if "unknown" in type:
        #     return ModelArch.Unknown
        return ModelArch.Unknown


class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")
    Unknown = ModelDetails("?")
    
    def from_str(wt):
        if "original" in wt.lower():
            return WeightType.Original
        if "adapter" in wt.lower():
            return WeightType.Adapter
        if "delta" in wt.lower():
            return WeightType.Delta
        return WeightType.Unknown

class Precision(Enum):
    auto = ModelDetails("auto")
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    float32 = ModelDetails("float32")
    # qt_8bit = ModelDetails("8bit")
    # qt_4bit = ModelDetails("4bit")
    # qt_GPTQ = ModelDetails("GPTQ")
    Unknown = ModelDetails("?")

    def from_str(precision):
        if precision in ["auto"]:
            return Precision.auto
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        if precision in ["float32"]:
            return Precision.float32
        # if precision in ["8bit"]:
        #    return Precision.qt_8bit
        # if precision in ["4bit"]:
        #    return Precision.qt_4bit
        # if precision in ["GPTQ", "None"]:
        #    return Precision.qt_GPTQ
        return Precision.Unknown


class PromptTemplateName(Enum):
    UniversalNERTemplate = "universal_ner"
    LLMHTMLHighlightedSpansTemplate = "llm_html_highlighted_spans"
    LLMHTMLHighlightedSpansTemplateV1 = "llm_html_highlighted_spans_v1"
    LLamaNERTemplate = "llama_70B_ner"
    # MixtralNERTemplate = "mixtral_ner_v0.3"

class EvaluationMetrics(Enum):
    SpanBased = "Span Based"
    TokenBased = "Token Based"


# Column selection
# changes to be made here
DATASET_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.dataset_task_col or c.invariant)]
OPEN_ENDED_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_col or c.invariant)]
MED_SAFETY_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.med_safety_col or c.invariant)]
MEDICAL_SUMMARIZATION_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.medical_summarization_col or c.invariant)]
ACI_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.aci_col or c.invariant)]
SOAP_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.soap_col or c.invariant)]
# if PRIVATE_REPO:
CLOSED_ENDED_ARABIC_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.closed_ended_arabic_col or c.invariant)]
# CROSS_EXAMINATION_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.cross_examination_col or c.invariant)]
# DATASET_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.med_safety_col and not c.cross_examination_col]
# OPEN_ENDED_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.dataset_task_col and not c.med_safety_col and not c.cross_examination_col]
# MED_SAFETY_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.dataset_task_col and not c.cross_examination_col]
# CROSS_EXAMINATION_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.med_safety_col and not c.dataset_task_col]

TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

# changes to be made here
DATASET_BENCHMARK_COLS = [t.value.col_name for t in HarnessTasks]
OPEN_ENDED_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedColumns]
MED_SAFETY_BENCHMARK_COLS = [t.value.col_name for t in MedSafetyColumns]
MEDICAL_SUMMARIZATION_BENCHMARK_COLS = [t.value.col_name for t in MedicalSummarizationColumns]
ACI_BENCHMARK_COLS = [t.value.col_name for t in ACIColumns]
SOAP_BENCHMARK_COLS = [t.value.col_name for t in SOAPColumns]
# if PRIVATE_REPO:
CLOSED_ENDED_ARABIC_BENCHMARK_COLS = [t.value.col_name for t in ClosedEndedArabicColumns]
# CROSS_EXAMINATION_BENCHMARK_COLS = [t.value.col_name for t in CrossExaminationTasks]

NUMERIC_INTERVALS = {
    "?": pd.Interval(-100, 0, closed="right"),
    "~1.5": pd.Interval(0, 2, closed="right"),
    "~3": pd.Interval(2, 4, closed="right"),
    "~7": pd.Interval(4, 9, closed="right"),
    "~13": pd.Interval(9, 20, closed="right"),
    "~35": pd.Interval(20, 45, closed="right"),
    "~60": pd.Interval(45, 70, closed="right"),
    "70+": pd.Interval(70, 10000, closed="right"),
}

def render_generation_templates(task: str, generation_type: str):
    with open("src/display/templates/system_prompts.json", "r") as f:
        system_prompt = json.load(f)[f"{task}+_+{generation_type}"]
    with open(f"src/display/templates/{task}+_+{generation_type}.jinja", "r") as f:
        user_prompt = f.read()
    system_prompt_textbox = gr.Textbox(
        value=system_prompt,
        label="System Prompt",
        lines=2,
        elem_id=f"system-prompt-textbox-{task}-{generation_type}",
        show_copy_button=True,
    )
    user_prompt_textbox = gr.Textbox(
        value=user_prompt,
        label="User Prompt",
        lines=15,
        elem_id=f"user-prompt-textbox-{task}-{generation_type}",
        show_copy_button=True,
    )
    return system_prompt_textbox, user_prompt_textbox
    # return None, None