Spaces:
Running
Running
Commit
·
0da5ee3
1
Parent(s):
b5701cc
[ADD] Open-ended evaluation
Browse files- app.py +125 -65
- src/about.py +4 -8
- src/display/utils.py +17 -8
- src/leaderboard/read_evals.py +56 -46
- src/populate.py +5 -2
app.py
CHANGED
@@ -21,9 +21,9 @@ from src.about import (
|
|
21 |
from src.display.css_html_js import custom_css
|
22 |
from src.display.utils import (
|
23 |
DATASET_BENCHMARK_COLS,
|
24 |
-
|
25 |
DATASET_COLS,
|
26 |
-
|
27 |
EVAL_COLS,
|
28 |
EVAL_TYPES,
|
29 |
NUMERIC_INTERVALS,
|
@@ -64,9 +64,10 @@ except Exception:
|
|
64 |
_, harness_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "accuracy", "datasets")
|
65 |
harness_datasets_leaderboard_df = harness_datasets_original_df.copy()
|
66 |
|
67 |
-
|
68 |
-
|
69 |
|
|
|
70 |
# # Token based results
|
71 |
# _, token_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "datasets")
|
72 |
# token_based_datasets_leaderboard_df = token_based_datasets_original_df.copy()
|
@@ -83,8 +84,12 @@ harness_datasets_leaderboard_df = harness_datasets_original_df.copy()
|
|
83 |
|
84 |
|
85 |
def update_df(shown_columns, subset="datasets"):
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
88 |
# else:
|
89 |
# match evaluation_metric:
|
90 |
# case "Span Based":
|
@@ -98,7 +103,7 @@ def update_df(shown_columns, subset="datasets"):
|
|
98 |
|
99 |
|
100 |
value_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns
|
101 |
-
|
102 |
return leaderboard_table_df[value_cols], hidden_leader_board_df
|
103 |
|
104 |
|
@@ -196,60 +201,6 @@ def filter_models(
|
|
196 |
|
197 |
return filtered_df
|
198 |
|
199 |
-
def change_submit_request_form(model_architecture):
|
200 |
-
match model_architecture:
|
201 |
-
case "Encoder":
|
202 |
-
return (
|
203 |
-
gr.Textbox(label="Threshold for gliner models", visible=False),
|
204 |
-
gr.Radio(
|
205 |
-
choices=["True", "False"],
|
206 |
-
label="Load GLiNER Tokenizer",
|
207 |
-
visible=False
|
208 |
-
),
|
209 |
-
gr.Dropdown(
|
210 |
-
choices=[prompt_template.value for prompt_template in PromptTemplateName],
|
211 |
-
label="Prompt for generation",
|
212 |
-
multiselect=False,
|
213 |
-
# value="HTML Highlighted Spans",
|
214 |
-
interactive=True,
|
215 |
-
visible=False
|
216 |
-
)
|
217 |
-
)
|
218 |
-
case "Decoder":
|
219 |
-
return (
|
220 |
-
gr.Textbox(label="Threshold for gliner models", visible=False),
|
221 |
-
gr.Radio(
|
222 |
-
choices=["True", "False"],
|
223 |
-
label="Load GLiNER Tokenizer",
|
224 |
-
visible=False
|
225 |
-
),
|
226 |
-
gr.Dropdown(
|
227 |
-
choices=[prompt_template.value for prompt_template in PromptTemplateName],
|
228 |
-
label="Prompt for generation",
|
229 |
-
multiselect=False,
|
230 |
-
# value="HTML Highlighted Spans",
|
231 |
-
interactive=True,
|
232 |
-
visible=True
|
233 |
-
)
|
234 |
-
)
|
235 |
-
case "GLiNER Encoder":
|
236 |
-
return (
|
237 |
-
gr.Textbox(label="Threshold for gliner models", visible=True),
|
238 |
-
gr.Radio(
|
239 |
-
choices=["True", "False"],
|
240 |
-
label="Load GLiNER Tokenizer",
|
241 |
-
visible=True
|
242 |
-
),
|
243 |
-
gr.Dropdown(
|
244 |
-
choices=[prompt_template.value for prompt_template in PromptTemplateName],
|
245 |
-
label="Prompt for generation",
|
246 |
-
multiselect=False,
|
247 |
-
# value="HTML Highlighted Spans",
|
248 |
-
interactive=True,
|
249 |
-
visible=False
|
250 |
-
)
|
251 |
-
)
|
252 |
-
|
253 |
|
254 |
demo = gr.Blocks(css=custom_css)
|
255 |
with demo:
|
@@ -269,11 +220,11 @@ with demo:
|
|
269 |
)
|
270 |
with gr.Row():
|
271 |
shown_columns = gr.CheckboxGroup(
|
272 |
-
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and
|
273 |
value=[
|
274 |
c.name
|
275 |
for c in fields(AutoEvalColumn)
|
276 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden and
|
277 |
],
|
278 |
label="Select columns to show",
|
279 |
elem_id="column-select",
|
@@ -371,8 +322,117 @@ with demo:
|
|
371 |
)
|
372 |
|
373 |
with gr.TabItem("🏅 Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1):
|
374 |
-
gr.
|
375 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
376 |
with gr.TabItem("🏅 Med Safety", elem_id="llm-benchmark-tab-table", id=2):
|
377 |
gr.Markdown("# Coming Soon!!!", elem_classes="markdown-text")
|
378 |
pass
|
|
|
21 |
from src.display.css_html_js import custom_css
|
22 |
from src.display.utils import (
|
23 |
DATASET_BENCHMARK_COLS,
|
24 |
+
OPEN_ENDED_BENCHMARK_COLS,
|
25 |
DATASET_COLS,
|
26 |
+
OPEN_ENDED_COLS,
|
27 |
EVAL_COLS,
|
28 |
EVAL_TYPES,
|
29 |
NUMERIC_INTERVALS,
|
|
|
64 |
_, harness_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "accuracy", "datasets")
|
65 |
harness_datasets_leaderboard_df = harness_datasets_original_df.copy()
|
66 |
|
67 |
+
_, open_ended_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OPEN_ENDED_COLS, OPEN_ENDED_BENCHMARK_COLS, "score", "open_ended")
|
68 |
+
open_ended_leaderboard_df = open_ended_original_df.copy()
|
69 |
|
70 |
+
# breakpoint()
|
71 |
# # Token based results
|
72 |
# _, token_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "datasets")
|
73 |
# token_based_datasets_leaderboard_df = token_based_datasets_original_df.copy()
|
|
|
84 |
|
85 |
|
86 |
def update_df(shown_columns, subset="datasets"):
|
87 |
+
if subset == "datasets":
|
88 |
+
leaderboard_table_df = harness_datasets_leaderboard_df.copy()
|
89 |
+
hidden_leader_board_df = harness_datasets_original_df
|
90 |
+
elif subset == "open_ended":
|
91 |
+
leaderboard_table_df = open_ended_leaderboard_df.copy()
|
92 |
+
hidden_leader_board_df = open_ended_original_df
|
93 |
# else:
|
94 |
# match evaluation_metric:
|
95 |
# case "Span Based":
|
|
|
103 |
|
104 |
|
105 |
value_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns
|
106 |
+
# breakpoint()
|
107 |
return leaderboard_table_df[value_cols], hidden_leader_board_df
|
108 |
|
109 |
|
|
|
201 |
|
202 |
return filtered_df
|
203 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
demo = gr.Blocks(css=custom_css)
|
206 |
with demo:
|
|
|
220 |
)
|
221 |
with gr.Row():
|
222 |
shown_columns = gr.CheckboxGroup(
|
223 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)],
|
224 |
value=[
|
225 |
c.name
|
226 |
for c in fields(AutoEvalColumn)
|
227 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)
|
228 |
],
|
229 |
label="Select columns to show",
|
230 |
elem_id="column-select",
|
|
|
322 |
)
|
323 |
|
324 |
with gr.TabItem("🏅 Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1):
|
325 |
+
with gr.Row():
|
326 |
+
with gr.Column():
|
327 |
+
with gr.Row():
|
328 |
+
search_bar = gr.Textbox(
|
329 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
330 |
+
show_label=False,
|
331 |
+
elem_id="search-bar",
|
332 |
+
)
|
333 |
+
with gr.Row():
|
334 |
+
shown_columns = gr.CheckboxGroup(
|
335 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)],
|
336 |
+
value=[
|
337 |
+
c.name
|
338 |
+
for c in fields(AutoEvalColumn)
|
339 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)
|
340 |
+
],
|
341 |
+
label="Select columns to show",
|
342 |
+
elem_id="column-select",
|
343 |
+
interactive=True,
|
344 |
+
)
|
345 |
+
# with gr.Row():
|
346 |
+
# deleted_models_visibility = gr.Checkbox(
|
347 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
348 |
+
# )
|
349 |
+
with gr.Column(min_width=320):
|
350 |
+
# with gr.Box(elem_id="box-filter"):
|
351 |
+
filter_columns_type = gr.CheckboxGroup(
|
352 |
+
label="Model Types",
|
353 |
+
choices=[t.to_str() for t in ModelType],
|
354 |
+
value=[t.to_str() for t in ModelType],
|
355 |
+
interactive=True,
|
356 |
+
elem_id="filter-columns-type",
|
357 |
+
)
|
358 |
+
# filter_columns_architecture = gr.CheckboxGroup(
|
359 |
+
# label="Architecture Types",
|
360 |
+
# choices=[i.value.name for i in ModelArch],
|
361 |
+
# value=[i.value.name for i in ModelArch],
|
362 |
+
# interactive=True,
|
363 |
+
# elem_id="filter-columns-architecture",
|
364 |
+
# )
|
365 |
+
filter_domain_specific = gr.CheckboxGroup(
|
366 |
+
label="Domain specific models",
|
367 |
+
choices=["Yes", "No"],
|
368 |
+
value=["Yes", "No"],
|
369 |
+
interactive=True,
|
370 |
+
elem_id="filter-columns-type",
|
371 |
+
)
|
372 |
+
filter_columns_size = gr.CheckboxGroup(
|
373 |
+
label="Model sizes (in billions of parameters)",
|
374 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
375 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
376 |
+
interactive=True,
|
377 |
+
elem_id="filter-columns-size",
|
378 |
+
)
|
379 |
+
|
380 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="open_ended")
|
381 |
+
|
382 |
+
leaderboard_table = gr.components.Dataframe(
|
383 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
384 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
385 |
+
datatype=TYPES,
|
386 |
+
elem_id="leaderboard-table",
|
387 |
+
interactive=False,
|
388 |
+
visible=True,
|
389 |
+
)
|
390 |
+
|
391 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
392 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
393 |
+
value=datasets_original_df[OPEN_ENDED_COLS],
|
394 |
+
headers=OPEN_ENDED_COLS,
|
395 |
+
datatype=TYPES,
|
396 |
+
visible=False,
|
397 |
+
)
|
398 |
+
|
399 |
+
|
400 |
+
search_bar.submit(
|
401 |
+
update_table,
|
402 |
+
[
|
403 |
+
hidden_leaderboard_table_for_search,
|
404 |
+
shown_columns,
|
405 |
+
search_bar,
|
406 |
+
filter_columns_type,
|
407 |
+
filter_domain_specific,
|
408 |
+
filter_columns_size
|
409 |
+
# filter_columns_architecture
|
410 |
+
],
|
411 |
+
leaderboard_table,
|
412 |
+
)
|
413 |
+
for selector in [
|
414 |
+
shown_columns,
|
415 |
+
filter_columns_type,
|
416 |
+
filter_domain_specific,
|
417 |
+
# filter_columns_architecture,
|
418 |
+
filter_columns_size,
|
419 |
+
# deleted_models_visibility,
|
420 |
+
]:
|
421 |
+
selector.change(
|
422 |
+
update_table,
|
423 |
+
[
|
424 |
+
hidden_leaderboard_table_for_search,
|
425 |
+
shown_columns,
|
426 |
+
search_bar,
|
427 |
+
filter_columns_type,
|
428 |
+
filter_domain_specific,
|
429 |
+
filter_columns_size
|
430 |
+
# filter_columns_architecture,
|
431 |
+
],
|
432 |
+
leaderboard_table,
|
433 |
+
queue=True,
|
434 |
+
)
|
435 |
+
|
436 |
with gr.TabItem("🏅 Med Safety", elem_id="llm-benchmark-tab-table", id=2):
|
437 |
gr.Markdown("# Coming Soon!!!", elem_classes="markdown-text")
|
438 |
pass
|
src/about.py
CHANGED
@@ -27,19 +27,15 @@ class HarnessTasks(Enum):
|
|
27 |
# task6 = Task("", "f1", "")
|
28 |
|
29 |
@dataclass
|
30 |
-
class
|
31 |
benchmark: str
|
32 |
metric: str
|
33 |
col_name: str
|
34 |
|
35 |
-
class
|
36 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
37 |
-
|
38 |
-
|
39 |
-
type2 = ClinicalType("drug", "f1", "DRUG")
|
40 |
-
type3 = ClinicalType("procedure", "f1", "PROCEDURE")
|
41 |
-
type4 = ClinicalType("gene", "f1", "GENE")
|
42 |
-
type5 = ClinicalType("gene variant", "f1", "GENE VARIANT")
|
43 |
|
44 |
|
45 |
NUM_FEWSHOT = 0 # Change with your few shot
|
|
|
27 |
# task6 = Task("", "f1", "")
|
28 |
|
29 |
@dataclass
|
30 |
+
class OpenEndedColumn:
|
31 |
benchmark: str
|
32 |
metric: str
|
33 |
col_name: str
|
34 |
|
35 |
+
class OpenEndedColumns(Enum):
|
36 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
37 |
+
column0 = OpenEndedColumn("ELO", "score", "ELO")
|
38 |
+
column1 = OpenEndedColumn("Score", "score", "Score")
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
NUM_FEWSHOT = 0 # Change with your few shot
|
src/display/utils.py
CHANGED
@@ -3,8 +3,7 @@ from enum import Enum
|
|
3 |
|
4 |
import pandas as pd
|
5 |
|
6 |
-
from src.about import HarnessTasks
|
7 |
-
from src.about import ClinicalTypes
|
8 |
|
9 |
|
10 |
def fields(raw_class):
|
@@ -20,9 +19,12 @@ class ColumnContent:
|
|
20 |
type: str
|
21 |
displayed_by_default: bool
|
22 |
hidden: bool = False
|
|
|
23 |
never_hidden: bool = False
|
24 |
dataset_task_col: bool = False
|
25 |
-
|
|
|
|
|
26 |
|
27 |
|
28 |
## Leaderboard columns
|
@@ -32,9 +34,11 @@ auto_eval_column_dict = []
|
|
32 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
33 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
34 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])
|
35 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True)])
|
36 |
for task in HarnessTasks:
|
37 |
-
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False, dataset_task_col=True)])
|
|
|
|
|
38 |
auto_eval_column_dict.append(["is_domain_specific", ColumnContent, ColumnContent("Is Domain Specific", "bool", False)])
|
39 |
auto_eval_column_dict.append(["use_chat_template", ColumnContent, ColumnContent("Uses Chat Template", "bool", False)])
|
40 |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
@@ -181,8 +185,11 @@ class EvaluationMetrics(Enum):
|
|
181 |
|
182 |
|
183 |
# Column selection
|
184 |
-
DATASET_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.
|
185 |
-
|
|
|
|
|
|
|
186 |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
187 |
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
188 |
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
@@ -191,7 +198,9 @@ EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
|
191 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
192 |
|
193 |
DATASET_BENCHMARK_COLS = [t.value.col_name for t in HarnessTasks]
|
194 |
-
|
|
|
|
|
195 |
|
196 |
NUMERIC_INTERVALS = {
|
197 |
"?": pd.Interval(-1, 0, closed="right"),
|
|
|
3 |
|
4 |
import pandas as pd
|
5 |
|
6 |
+
from src.about import HarnessTasks, OpenEndedColumns
|
|
|
7 |
|
8 |
|
9 |
def fields(raw_class):
|
|
|
19 |
type: str
|
20 |
displayed_by_default: bool
|
21 |
hidden: bool = False
|
22 |
+
invariant: bool = True
|
23 |
never_hidden: bool = False
|
24 |
dataset_task_col: bool = False
|
25 |
+
open_ended_col: bool = False
|
26 |
+
med_safety_col: bool = False
|
27 |
+
cross_examination_col: bool = False
|
28 |
|
29 |
|
30 |
## Leaderboard columns
|
|
|
34 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
35 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
36 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])
|
37 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True, False, dataset_task_col=True, invariant=False)])
|
38 |
for task in HarnessTasks:
|
39 |
+
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False, dataset_task_col=True, invariant=False)])
|
40 |
+
for column in OpenEndedColumns:
|
41 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_col=True, invariant=False)])
|
42 |
auto_eval_column_dict.append(["is_domain_specific", ColumnContent, ColumnContent("Is Domain Specific", "bool", False)])
|
43 |
auto_eval_column_dict.append(["use_chat_template", ColumnContent, ColumnContent("Uses Chat Template", "bool", False)])
|
44 |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
|
|
185 |
|
186 |
|
187 |
# Column selection
|
188 |
+
DATASET_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.med_safety_col and not c.cross_examination_col]
|
189 |
+
OPEN_ENDED_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.dataset_task_col and not c.med_safety_col and not c.cross_examination_col]
|
190 |
+
MED_SAFETY_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.dataset_task_col and not c.cross_examination_col]
|
191 |
+
CROSS_EXAMINATION_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.med_safety_col and not c.dataset_task_col]
|
192 |
+
|
193 |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
194 |
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
195 |
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
|
|
198 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
199 |
|
200 |
DATASET_BENCHMARK_COLS = [t.value.col_name for t in HarnessTasks]
|
201 |
+
OPEN_ENDED_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedColumns]
|
202 |
+
# MED_SAFETY_BENCHMARK_COLS = [t.value.col_name for t in MedSafetyTasks]
|
203 |
+
# CROSS_EXAMINATION_BENCHMARK_COLS = [t.value.col_name for t in CrossExaminationTasks]
|
204 |
|
205 |
NUMERIC_INTERVALS = {
|
206 |
"?": pd.Interval(-1, 0, closed="right"),
|
src/leaderboard/read_evals.py
CHANGED
@@ -8,7 +8,7 @@ import dateutil
|
|
8 |
import numpy as np
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
-
from src.display.utils import AutoEvalColumn, ModelType, ModelArch, Precision, HarnessTasks, WeightType,
|
12 |
from src.submission.check_validity import is_model_on_hub
|
13 |
|
14 |
|
@@ -22,6 +22,9 @@ class EvalResult:
|
|
22 |
model: str
|
23 |
revision: str # commit hash, "" if main
|
24 |
dataset_results: dict
|
|
|
|
|
|
|
25 |
is_domain_specific: bool
|
26 |
use_chat_template: bool
|
27 |
# clinical_type_results:dict
|
@@ -90,6 +93,19 @@ class EvalResult:
|
|
90 |
continue
|
91 |
mean_acc = np.mean(accs) # * 100.0
|
92 |
harness_results[task.benchmark] = mean_acc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
# types_results = {}
|
94 |
# for clinical_type in ClinicalTypes:
|
95 |
# clinical_type = clinical_type.value
|
@@ -109,6 +125,9 @@ class EvalResult:
|
|
109 |
model=model,
|
110 |
revision=config.get("revision", ""),
|
111 |
dataset_results=harness_results,
|
|
|
|
|
|
|
112 |
is_domain_specific=config.get("is_domain_specific", False), # Assuming a default value
|
113 |
use_chat_template=config.get("use_chat_template", False), # Assuming a default value
|
114 |
precision=precision,
|
@@ -146,60 +165,51 @@ class EvalResult:
|
|
146 |
|
147 |
def to_dict(self, subset):
|
148 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
if subset == "datasets":
|
150 |
average = sum([v for v in self.dataset_results.values() if v is not None]) / len(HarnessTasks)
|
151 |
-
data_dict =
|
152 |
-
"eval_name": self.eval_name, # not a column, just a save name,
|
153 |
-
AutoEvalColumn.precision.name: self.precision.value.name,
|
154 |
-
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
155 |
-
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol + (" 🏥" if self.is_domain_specific else ""),
|
156 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
157 |
-
# AutoEvalColumn.architecture.name: self.architecture.value.name,
|
158 |
-
# AutoEvalColumn.backbone.name: self.backbone,
|
159 |
-
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
160 |
-
AutoEvalColumn.is_domain_specific.name: self.is_domain_specific,
|
161 |
-
AutoEvalColumn.use_chat_template.name: self.use_chat_template,
|
162 |
-
AutoEvalColumn.revision.name: self.revision,
|
163 |
-
AutoEvalColumn.average.name: average,
|
164 |
-
AutoEvalColumn.license.name: self.license,
|
165 |
-
AutoEvalColumn.likes.name: self.likes,
|
166 |
-
AutoEvalColumn.params.name: self.num_params,
|
167 |
-
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
168 |
-
AutoEvalColumn.date.name: self.date,
|
169 |
-
"display_result" : self.display_result,
|
170 |
-
}
|
171 |
if len(self.dataset_results) > 0:
|
172 |
for task in HarnessTasks:
|
173 |
data_dict[task.value.col_name] = self.dataset_results[task.value.benchmark]
|
174 |
-
|
175 |
return data_dict
|
176 |
|
177 |
-
if subset == "
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
AutoEvalColumn.precision.name: self.precision.value.name,
|
182 |
-
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
183 |
-
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
184 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
185 |
-
AutoEvalColumn.architecture.name: self.architecture.value.name,
|
186 |
-
AutoEvalColumn.backbone.name: self.backbone,
|
187 |
-
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
188 |
-
AutoEvalColumn.revision.name: self.revision,
|
189 |
-
AutoEvalColumn.average.name: average,
|
190 |
-
AutoEvalColumn.license.name: self.license,
|
191 |
-
AutoEvalColumn.likes.name: self.likes,
|
192 |
-
AutoEvalColumn.params.name: self.num_params,
|
193 |
-
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
194 |
-
"display_result" : self.display_result,
|
195 |
-
}
|
196 |
-
|
197 |
-
for clinical_type in ClinicalTypes:
|
198 |
-
data_dict[clinical_type.value.col_name] = self.clinical_type_results[clinical_type.value.benchmark]
|
199 |
-
|
200 |
return data_dict
|
201 |
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
def get_request_file_for_model(requests_path, model_name, precision):
|
205 |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
|
|
8 |
import numpy as np
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
+
from src.display.utils import AutoEvalColumn, ModelType, ModelArch, Precision, HarnessTasks, WeightType, OpenEndedColumns
|
12 |
from src.submission.check_validity import is_model_on_hub
|
13 |
|
14 |
|
|
|
22 |
model: str
|
23 |
revision: str # commit hash, "" if main
|
24 |
dataset_results: dict
|
25 |
+
open_ended_results: dict
|
26 |
+
med_safety_results: dict
|
27 |
+
cross_examination_results: dict
|
28 |
is_domain_specific: bool
|
29 |
use_chat_template: bool
|
30 |
# clinical_type_results:dict
|
|
|
93 |
continue
|
94 |
mean_acc = np.mean(accs) # * 100.0
|
95 |
harness_results[task.benchmark] = mean_acc
|
96 |
+
open_ended_results = {}
|
97 |
+
if "open-ended" in data["results"]:
|
98 |
+
for task in OpenEndedColumns:
|
99 |
+
task = task.value
|
100 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
101 |
+
accs = np.array([v for k, v in data["results"]["open-ended"]["overall"].items() if task.benchmark == k])
|
102 |
+
if accs.size == 0 or any([acc is None for acc in accs]):
|
103 |
+
continue
|
104 |
+
mean_acc = np.mean(accs) # * 100.0
|
105 |
+
open_ended_results[task.benchmark] = mean_acc
|
106 |
+
# breakpoint()
|
107 |
+
med_safety_results = {}
|
108 |
+
cross_examination_results = {}
|
109 |
# types_results = {}
|
110 |
# for clinical_type in ClinicalTypes:
|
111 |
# clinical_type = clinical_type.value
|
|
|
125 |
model=model,
|
126 |
revision=config.get("revision", ""),
|
127 |
dataset_results=harness_results,
|
128 |
+
open_ended_results=open_ended_results,
|
129 |
+
med_safety_results=med_safety_results,
|
130 |
+
cross_examination_results=cross_examination_results,
|
131 |
is_domain_specific=config.get("is_domain_specific", False), # Assuming a default value
|
132 |
use_chat_template=config.get("use_chat_template", False), # Assuming a default value
|
133 |
precision=precision,
|
|
|
165 |
|
166 |
def to_dict(self, subset):
|
167 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
168 |
+
data_dict = {
|
169 |
+
"eval_name": self.eval_name, # not a column, just a save name,
|
170 |
+
AutoEvalColumn.precision.name: self.precision.value.name,
|
171 |
+
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
172 |
+
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol + (" 🏥" if self.is_domain_specific else ""),
|
173 |
+
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
174 |
+
# AutoEvalColumn.architecture.name: self.architecture.value.name,
|
175 |
+
# AutoEvalColumn.backbone.name: self.backbone,
|
176 |
+
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
177 |
+
AutoEvalColumn.is_domain_specific.name: self.is_domain_specific,
|
178 |
+
AutoEvalColumn.use_chat_template.name: self.use_chat_template,
|
179 |
+
AutoEvalColumn.revision.name: self.revision,
|
180 |
+
AutoEvalColumn.license.name: self.license,
|
181 |
+
AutoEvalColumn.likes.name: self.likes,
|
182 |
+
AutoEvalColumn.params.name: self.num_params,
|
183 |
+
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
184 |
+
AutoEvalColumn.date.name: self.date,
|
185 |
+
"display_result" : self.display_result,
|
186 |
+
}
|
187 |
+
|
188 |
if subset == "datasets":
|
189 |
average = sum([v for v in self.dataset_results.values() if v is not None]) / len(HarnessTasks)
|
190 |
+
data_dict[AutoEvalColumn.average.name] = average
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
if len(self.dataset_results) > 0:
|
192 |
for task in HarnessTasks:
|
193 |
data_dict[task.value.col_name] = self.dataset_results[task.value.benchmark]
|
|
|
194 |
return data_dict
|
195 |
|
196 |
+
if subset == "open_ended":
|
197 |
+
if len(self.open_ended_results) > 0:
|
198 |
+
for task in OpenEndedColumns:
|
199 |
+
data_dict[task.value.col_name] = self.open_ended_results[task.value.benchmark]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
return data_dict
|
201 |
|
202 |
+
# if subset == "med_safety":
|
203 |
+
# if len(self.med_safety_results) > 0:
|
204 |
+
# for task in MedSafetyTasks:
|
205 |
+
# data_dict[task.value.col_name] = self.med_safety_results[task.value.benchmark]
|
206 |
+
# return data_dict
|
207 |
+
|
208 |
+
# if subset == "cross_examination":
|
209 |
+
# if len(self.cross_examination_results) > 0:
|
210 |
+
# for task in CrossExaminationTasks:
|
211 |
+
# data_dict[task.value.col_name] = self.cross_examination_results[task.value.benchmark]
|
212 |
+
# return data_dict
|
213 |
|
214 |
def get_request_file_for_model(requests_path, model_name, precision):
|
215 |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
src/populate.py
CHANGED
@@ -4,7 +4,7 @@ import os
|
|
4 |
import pandas as pd
|
5 |
|
6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
-
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
|
10 |
|
@@ -16,7 +16,10 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
16 |
all_data_json = [v.to_dict(subset=subset) for v in raw_data]
|
17 |
|
18 |
df = pd.DataFrame.from_records(all_data_json)
|
19 |
-
|
|
|
|
|
|
|
20 |
cols = list(set(df.columns).intersection(set(cols)))
|
21 |
df = df[cols].round(decimals=2)
|
22 |
|
|
|
4 |
import pandas as pd
|
5 |
|
6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
+
from src.display.utils import AutoEvalColumn, EvalQueueColumn, OpenEndedColumns
|
8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
|
10 |
|
|
|
16 |
all_data_json = [v.to_dict(subset=subset) for v in raw_data]
|
17 |
|
18 |
df = pd.DataFrame.from_records(all_data_json)
|
19 |
+
if subset == "datasets":
|
20 |
+
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
21 |
+
elif subset == "open_ended":
|
22 |
+
df = df.sort_values(by=["ELO"], ascending=False)
|
23 |
cols = list(set(df.columns).intersection(set(cols)))
|
24 |
df = df[cols].round(decimals=2)
|
25 |
|