Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
-
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
4 |
import logging
|
5 |
import os
|
|
|
6 |
|
7 |
logging.basicConfig(level=logging.DEBUG)
|
8 |
logger = logging.getLogger(__name__)
|
@@ -15,6 +16,17 @@ MODELS = {
|
|
15 |
"nidra-v2": "m1k3wn/nidra-v2"
|
16 |
}
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
class PredictionRequest(BaseModel):
|
19 |
inputs: str
|
20 |
model: str = "nidra-v1"
|
@@ -28,33 +40,56 @@ async def predict(request: PredictionRequest):
|
|
28 |
logger.info(f"Loading model: {request.model}")
|
29 |
model_path = MODELS[request.model]
|
30 |
|
31 |
-
#
|
32 |
tokenizer = T5Tokenizer.from_pretrained(
|
33 |
model_path,
|
34 |
token=HF_TOKEN,
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
)
|
37 |
|
38 |
model = T5ForConditionalGeneration.from_pretrained(
|
39 |
model_path,
|
40 |
-
token=HF_TOKEN
|
|
|
41 |
)
|
42 |
|
43 |
full_input = "Interpret this dream: " + request.inputs
|
44 |
logger.info(f"Processing: {full_input}")
|
45 |
|
|
|
46 |
inputs = tokenizer(
|
47 |
full_input,
|
48 |
return_tensors="pt",
|
49 |
truncation=True,
|
50 |
-
max_length=512
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
)
|
52 |
|
53 |
-
outputs = model.generate(**inputs, max_length=200)
|
54 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
55 |
|
56 |
return PredictionResponse(generated_text=result)
|
57 |
|
58 |
except Exception as e:
|
59 |
logger.error(f"Error: {str(e)}")
|
60 |
-
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
4 |
import logging
|
5 |
import os
|
6 |
+
import json
|
7 |
|
8 |
logging.basicConfig(level=logging.DEBUG)
|
9 |
logger = logging.getLogger(__name__)
|
|
|
16 |
"nidra-v2": "m1k3wn/nidra-v2"
|
17 |
}
|
18 |
|
19 |
+
# Define the tokenizer configuration explicitly
|
20 |
+
TOKENIZER_CONFIG = {
|
21 |
+
"model_max_length": 512,
|
22 |
+
"clean_up_tokenization_spaces": False,
|
23 |
+
"tokenizer_class": "T5Tokenizer",
|
24 |
+
"pad_token": "<pad>",
|
25 |
+
"eos_token": "</s>",
|
26 |
+
"unk_token": "<unk>",
|
27 |
+
"extra_ids": 100
|
28 |
+
}
|
29 |
+
|
30 |
class PredictionRequest(BaseModel):
|
31 |
inputs: str
|
32 |
model: str = "nidra-v1"
|
|
|
40 |
logger.info(f"Loading model: {request.model}")
|
41 |
model_path = MODELS[request.model]
|
42 |
|
43 |
+
# Initialize tokenizer with explicit config
|
44 |
tokenizer = T5Tokenizer.from_pretrained(
|
45 |
model_path,
|
46 |
token=HF_TOKEN,
|
47 |
+
model_max_length=TOKENIZER_CONFIG["model_max_length"],
|
48 |
+
clean_up_tokenization_spaces=TOKENIZER_CONFIG["clean_up_tokenization_spaces"],
|
49 |
+
pad_token=TOKENIZER_CONFIG["pad_token"],
|
50 |
+
eos_token=TOKENIZER_CONFIG["eos_token"],
|
51 |
+
unk_token=TOKENIZER_CONFIG["unk_token"],
|
52 |
+
extra_ids=TOKENIZER_CONFIG["extra_ids"],
|
53 |
+
use_fast=True # Try forcing the fast tokenizer
|
54 |
)
|
55 |
|
56 |
model = T5ForConditionalGeneration.from_pretrained(
|
57 |
model_path,
|
58 |
+
token=HF_TOKEN,
|
59 |
+
torch_dtype="auto"
|
60 |
)
|
61 |
|
62 |
full_input = "Interpret this dream: " + request.inputs
|
63 |
logger.info(f"Processing: {full_input}")
|
64 |
|
65 |
+
# Add explicit encoding parameters
|
66 |
inputs = tokenizer(
|
67 |
full_input,
|
68 |
return_tensors="pt",
|
69 |
truncation=True,
|
70 |
+
max_length=512,
|
71 |
+
padding=True,
|
72 |
+
add_special_tokens=True
|
73 |
+
)
|
74 |
+
|
75 |
+
outputs = model.generate(
|
76 |
+
**inputs,
|
77 |
+
max_length=200,
|
78 |
+
num_beams=4,
|
79 |
+
no_repeat_ngram_size=2,
|
80 |
+
length_penalty=1.0
|
81 |
)
|
82 |
|
|
|
83 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
84 |
+
logger.info(f"Generated result: {result}")
|
85 |
|
86 |
return PredictionResponse(generated_text=result)
|
87 |
|
88 |
except Exception as e:
|
89 |
logger.error(f"Error: {str(e)}")
|
90 |
+
raise HTTPException(status_code=500, detail=str(e))
|
91 |
+
|
92 |
+
# Add health check endpoint
|
93 |
+
@app.get("/health")
|
94 |
+
async def health():
|
95 |
+
return {"status": "healthy"}
|