Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,60 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
-
from transformers import
|
4 |
import logging
|
5 |
import os
|
6 |
-
import torch
|
7 |
|
8 |
-
|
9 |
-
logging.basicConfig(level=logging.INFO)
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
-
# Initialize FastAPI
|
13 |
app = FastAPI()
|
14 |
-
|
15 |
-
# Get HF token
|
16 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
17 |
|
18 |
-
# Define models
|
19 |
MODELS = {
|
20 |
"nidra-v1": "m1k3wn/nidra-v1",
|
21 |
"nidra-v2": "m1k3wn/nidra-v2"
|
22 |
}
|
23 |
|
24 |
-
# Simple request model
|
25 |
class PredictionRequest(BaseModel):
|
26 |
inputs: str
|
27 |
model: str = "nidra-v1"
|
28 |
|
29 |
-
# Simple response model
|
30 |
class PredictionResponse(BaseModel):
|
31 |
generated_text: str
|
32 |
|
33 |
-
@app.get("/")
|
34 |
-
async def root():
|
35 |
-
return {"message": "Dream Interpretation API", "status": "running"}
|
36 |
-
|
37 |
-
@app.get("/health")
|
38 |
-
async def health():
|
39 |
-
return {"status": "healthy"}
|
40 |
-
|
41 |
@app.post("/predict", response_model=PredictionResponse)
|
42 |
async def predict(request: PredictionRequest):
|
43 |
try:
|
44 |
-
|
45 |
model_path = MODELS[request.model]
|
46 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path, token=HF_TOKEN)
|
47 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_path, token=HF_TOKEN)
|
48 |
|
49 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
full_input = "Interpret this dream: " + request.inputs
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
54 |
|
55 |
return PredictionResponse(generated_text=result)
|
|
|
56 |
except Exception as e:
|
|
|
57 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration # Note: Using specific T5 classes
|
4 |
import logging
|
5 |
import os
|
|
|
6 |
|
7 |
+
logging.basicConfig(level=logging.DEBUG)
|
|
|
8 |
logger = logging.getLogger(__name__)
|
9 |
|
|
|
10 |
app = FastAPI()
|
|
|
|
|
11 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
12 |
|
|
|
13 |
MODELS = {
|
14 |
"nidra-v1": "m1k3wn/nidra-v1",
|
15 |
"nidra-v2": "m1k3wn/nidra-v2"
|
16 |
}
|
17 |
|
|
|
18 |
class PredictionRequest(BaseModel):
|
19 |
inputs: str
|
20 |
model: str = "nidra-v1"
|
21 |
|
|
|
22 |
class PredictionResponse(BaseModel):
|
23 |
generated_text: str
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
@app.post("/predict", response_model=PredictionResponse)
|
26 |
async def predict(request: PredictionRequest):
|
27 |
try:
|
28 |
+
logger.info(f"Loading model: {request.model}")
|
29 |
model_path = MODELS[request.model]
|
|
|
|
|
30 |
|
31 |
+
# Use T5-specific classes instead of Auto classes
|
32 |
+
tokenizer = T5Tokenizer.from_pretrained(
|
33 |
+
model_path,
|
34 |
+
token=HF_TOKEN,
|
35 |
+
legacy=True # Try with legacy mode first
|
36 |
+
)
|
37 |
+
|
38 |
+
model = T5ForConditionalGeneration.from_pretrained(
|
39 |
+
model_path,
|
40 |
+
token=HF_TOKEN
|
41 |
+
)
|
42 |
+
|
43 |
full_input = "Interpret this dream: " + request.inputs
|
44 |
+
logger.info(f"Processing: {full_input}")
|
45 |
+
|
46 |
+
inputs = tokenizer(
|
47 |
+
full_input,
|
48 |
+
return_tensors="pt",
|
49 |
+
truncation=True,
|
50 |
+
max_length=512
|
51 |
+
)
|
52 |
+
|
53 |
+
outputs = model.generate(**inputs, max_length=200)
|
54 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
55 |
|
56 |
return PredictionResponse(generated_text=result)
|
57 |
+
|
58 |
except Exception as e:
|
59 |
+
logger.error(f"Error: {str(e)}")
|
60 |
raise HTTPException(status_code=500, detail=str(e))
|