Spaces:
Running
Running
"""Boxes for defining PyTorch models.""" | |
import copy | |
import graphlib | |
import types | |
import pydantic | |
from lynxkite.core import ops, workspace | |
from lynxkite.core.ops import Parameter as P | |
import torch | |
import torch_geometric as pyg | |
import dataclasses | |
from . import core | |
ENV = "PyTorch model" | |
def reg(name, inputs=[], outputs=None, params=[]): | |
if outputs is None: | |
outputs = inputs | |
return ops.register_passive_op( | |
ENV, | |
name, | |
inputs=[ | |
ops.Input(name=name, position="bottom", type="tensor") for name in inputs | |
], | |
outputs=[ | |
ops.Output(name=name, position="top", type="tensor") for name in outputs | |
], | |
params=params, | |
) | |
reg("Input: embedding", outputs=["x"]) | |
reg("Input: graph edges", outputs=["edges"]) | |
reg("Input: label", outputs=["y"]) | |
reg("Input: positive sample", outputs=["x_pos"]) | |
reg("Input: negative sample", outputs=["x_neg"]) | |
reg("Input: sequential", outputs=["y"]) | |
reg("Input: zeros", outputs=["x"]) | |
reg("LSTM", inputs=["x", "h"], outputs=["x", "h"]) | |
reg( | |
"Neural ODE", | |
inputs=["x"], | |
params=[ | |
P.basic("relative_tolerance"), | |
P.basic("absolute_tolerance"), | |
P.options( | |
"method", | |
[ | |
"dopri8", | |
"dopri5", | |
"bosh3", | |
"fehlberg2", | |
"adaptive_heun", | |
"euler", | |
"midpoint", | |
"rk4", | |
"explicit_adams", | |
"implicit_adams", | |
], | |
), | |
], | |
) | |
reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"]) | |
reg("LayerNorm", inputs=["x"]) | |
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)]) | |
reg("Linear", inputs=["x"], params=[P.basic("output_dim", "same")]) | |
reg("Softmax", inputs=["x"]) | |
reg( | |
"Graph conv", | |
inputs=["x", "edges"], | |
outputs=["x"], | |
params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])], | |
) | |
reg( | |
"Activation", | |
inputs=["x"], | |
params=[P.options("type", ["ReLU", "Leaky ReLU", "Tanh", "Mish"])], | |
) | |
reg("Concatenate", inputs=["a", "b"], outputs=["x"]) | |
reg("Add", inputs=["a", "b"], outputs=["x"]) | |
reg("Subtract", inputs=["a", "b"], outputs=["x"]) | |
reg("Multiply", inputs=["a", "b"], outputs=["x"]) | |
reg("MSE loss", inputs=["x", "y"], outputs=["loss"]) | |
reg("Triplet margin loss", inputs=["x", "x_pos", "x_neg"], outputs=["loss"]) | |
reg("Cross-entropy loss", inputs=["x", "y"], outputs=["loss"]) | |
reg( | |
"Optimizer", | |
inputs=["loss"], | |
outputs=[], | |
params=[ | |
P.options( | |
"type", | |
[ | |
"AdamW", | |
"Adafactor", | |
"Adagrad", | |
"SGD", | |
"Lion", | |
"Paged AdamW", | |
"Galore AdamW", | |
], | |
), | |
P.basic("lr", 0.001), | |
], | |
) | |
ops.register_passive_op( | |
ENV, | |
"Repeat", | |
inputs=[ops.Input(name="input", position="top", type="tensor")], | |
outputs=[ops.Output(name="output", position="bottom", type="tensor")], | |
params=[ | |
ops.Parameter.basic("times", 1, int), | |
ops.Parameter.basic("same_weights", True, bool), | |
], | |
) | |
ops.register_passive_op( | |
ENV, | |
"Recurrent chain", | |
inputs=[ops.Input(name="input", position="top", type="tensor")], | |
outputs=[ops.Output(name="output", position="bottom", type="tensor")], | |
params=[], | |
) | |
def _to_id(*strings: str) -> str: | |
"""Replaces all non-alphanumeric characters with underscores.""" | |
return "_".join("".join(c if c.isalnum() else "_" for c in s) for s in strings) | |
class ColumnSpec(pydantic.BaseModel): | |
df: str | |
column: str | |
class ModelMapping(pydantic.BaseModel): | |
map: dict[str, ColumnSpec] | |
class ModelConfig: | |
model: torch.nn.Module | |
model_inputs: list[str] | |
model_outputs: list[str] | |
loss_inputs: list[str] | |
loss: torch.nn.Module | |
optimizer: torch.optim.Optimizer | |
source_workspace: str | None = None | |
trained: bool = False | |
def _forward(self, inputs: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: | |
model_inputs = [inputs[i] for i in self.model_inputs] | |
output = self.model(*model_inputs) | |
if not isinstance(output, tuple): | |
output = (output,) | |
values = {k: v for k, v in zip(self.model_outputs, output)} | |
return values | |
def inference(self, inputs: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: | |
# TODO: Do multiple batches. | |
self.model.eval() | |
return self._forward(inputs) | |
def train(self, inputs: dict[str, torch.Tensor]) -> float: | |
"""Train the model for one epoch. Returns the loss.""" | |
# TODO: Do multiple batches. | |
self.model.train() | |
self.optimizer.zero_grad() | |
values = self._forward(inputs) | |
values.update(inputs) | |
loss_inputs = [values[i] for i in self.loss_inputs] | |
loss = self.loss(*loss_inputs) | |
loss.backward() | |
self.optimizer.step() | |
return loss.item() | |
def copy(self): | |
"""Returns a copy of the model.""" | |
c = dataclasses.replace(self) | |
c.model = copy.deepcopy(self.model) | |
return c | |
def default_display(self): | |
return { | |
"type": "model", | |
"model": { | |
"inputs": self.model_inputs, | |
"outputs": self.model_outputs, | |
"loss_inputs": self.loss_inputs, | |
"trained": self.trained, | |
}, | |
} | |
def build_model( | |
ws: workspace.Workspace, inputs: dict[str, torch.Tensor] | |
) -> ModelConfig: | |
"""Builds the model described in the workspace.""" | |
catalog = ops.CATALOGS[ENV] | |
optimizers = [] | |
nodes = {} | |
for node in ws.nodes: | |
nodes[node.id] = node | |
if node.data.title == "Optimizer": | |
optimizers.append(node.id) | |
assert optimizers, "No optimizer found." | |
assert len(optimizers) == 1, f"More than one optimizer found: {optimizers}" | |
[optimizer] = optimizers | |
dependencies = {n.id: [] for n in ws.nodes} | |
in_edges = {} | |
out_edges = {} | |
# TODO: Dissolve repeat boxes here. | |
for e in ws.edges: | |
dependencies[e.target].append(e.source) | |
in_edges.setdefault(e.target, {}).setdefault(e.targetHandle, []).append( | |
(e.source, e.sourceHandle) | |
) | |
out_edges.setdefault(e.source, {}).setdefault(e.sourceHandle, []).append( | |
(e.target, e.targetHandle) | |
) | |
sizes = {} | |
for k, i in inputs.items(): | |
sizes[k] = i.shape[-1] | |
ts = graphlib.TopologicalSorter(dependencies) | |
layers = [] | |
loss_layers = [] | |
in_loss = set() | |
cfg = {} | |
used_in_model = set() | |
made_in_model = set() | |
used_in_loss = set() | |
made_in_loss = set() | |
for node_id in ts.static_order(): | |
node = nodes[node_id] | |
t = node.data.title | |
op = catalog[t] | |
p = op.convert_params(node.data.params) | |
for b in dependencies[node_id]: | |
if b in in_loss: | |
in_loss.add(node_id) | |
if "loss" in t: | |
in_loss.add(node_id) | |
inputs = {} | |
for n in in_edges.get(node_id, []): | |
for b, h in in_edges[node_id][n]: | |
i = _to_id(b, h) | |
inputs[n] = i | |
if node_id in in_loss: | |
used_in_loss.add(i) | |
else: | |
used_in_model.add(i) | |
outputs = {} | |
for out in out_edges.get(node_id, []): | |
i = _to_id(node_id, out) | |
outputs[out] = i | |
if inputs: # Nodes with no inputs are input nodes. Their outputs are not "made" by us. | |
if node_id in in_loss: | |
made_in_loss.add(i) | |
else: | |
made_in_model.add(i) | |
inputs = types.SimpleNamespace(**inputs) | |
outputs = types.SimpleNamespace(**outputs) | |
ls = loss_layers if node_id in in_loss else layers | |
match t: | |
case "Linear": | |
isize = sizes.get(inputs.x, 1) | |
osize = isize if p["output_dim"] == "same" else int(p["output_dim"]) | |
ls.append((torch.nn.Linear(isize, osize), f"{inputs.x} -> {outputs.x}")) | |
sizes[outputs.x] = osize | |
case "Activation": | |
f = getattr( | |
torch.nn.functional, p["type"].name.lower().replace(" ", "_") | |
) | |
ls.append((f, f"{inputs.x} -> {outputs.x}")) | |
sizes[outputs.x] = sizes.get(inputs.x, 1) | |
case "MSE loss": | |
ls.append( | |
( | |
torch.nn.functional.mse_loss, | |
f"{inputs.x}, {inputs.y} -> {outputs.loss}", | |
) | |
) | |
cfg["model_inputs"] = list(used_in_model - made_in_model) | |
cfg["model_outputs"] = list(made_in_model & used_in_loss) | |
cfg["loss_inputs"] = list(used_in_loss - made_in_loss) | |
# Make sure the trained output is output from the last model layer. | |
outputs = ", ".join(cfg["model_outputs"]) | |
layers.append((torch.nn.Identity(), f"{outputs} -> {outputs}")) | |
# Create model. | |
cfg["model"] = pyg.nn.Sequential(", ".join(cfg["model_inputs"]), layers) | |
# Make sure the loss is output from the last loss layer. | |
[(lossb, lossh)] = in_edges[optimizer]["loss"] | |
lossi = _to_id(lossb, lossh) | |
loss_layers.append((torch.nn.Identity(), f"{lossi} -> loss")) | |
# Create loss function. | |
cfg["loss"] = pyg.nn.Sequential(", ".join(cfg["loss_inputs"]), loss_layers) | |
assert not list(cfg["loss"].parameters()), ( | |
f"loss should have no parameters: {list(cfg['loss'].parameters())}" | |
) | |
# Create optimizer. | |
op = catalog["Optimizer"] | |
p = op.convert_params(nodes[optimizer].data.params) | |
o = getattr(torch.optim, p["type"].name) | |
cfg["optimizer"] = o(cfg["model"].parameters(), lr=p["lr"]) | |
return ModelConfig(**cfg) | |
def to_tensors(b: core.Bundle, m: ModelMapping | None) -> dict[str, torch.Tensor]: | |
"""Converts a tensor to the correct type for PyTorch. Ignores missing mappings.""" | |
if m is None: | |
return {} | |
tensors = {} | |
for k, v in m.map.items(): | |
if v.df in b.dfs and v.column in b.dfs[v.df]: | |
tensors[k] = torch.tensor( | |
b.dfs[v.df][v.column].to_list(), dtype=torch.float32 | |
) | |
return tensors | |