darabos's picture
Mapping UI is now working.
daba3de
raw
history blame
10.4 kB
"""Boxes for defining PyTorch models."""
import copy
import graphlib
import types
import pydantic
from lynxkite.core import ops, workspace
from lynxkite.core.ops import Parameter as P
import torch
import torch_geometric as pyg
import dataclasses
from . import core
ENV = "PyTorch model"
def reg(name, inputs=[], outputs=None, params=[]):
if outputs is None:
outputs = inputs
return ops.register_passive_op(
ENV,
name,
inputs=[
ops.Input(name=name, position="bottom", type="tensor") for name in inputs
],
outputs=[
ops.Output(name=name, position="top", type="tensor") for name in outputs
],
params=params,
)
reg("Input: embedding", outputs=["x"])
reg("Input: graph edges", outputs=["edges"])
reg("Input: label", outputs=["y"])
reg("Input: positive sample", outputs=["x_pos"])
reg("Input: negative sample", outputs=["x_neg"])
reg("Input: sequential", outputs=["y"])
reg("Input: zeros", outputs=["x"])
reg("LSTM", inputs=["x", "h"], outputs=["x", "h"])
reg(
"Neural ODE",
inputs=["x"],
params=[
P.basic("relative_tolerance"),
P.basic("absolute_tolerance"),
P.options(
"method",
[
"dopri8",
"dopri5",
"bosh3",
"fehlberg2",
"adaptive_heun",
"euler",
"midpoint",
"rk4",
"explicit_adams",
"implicit_adams",
],
),
],
)
reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"])
reg("LayerNorm", inputs=["x"])
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)])
reg("Linear", inputs=["x"], params=[P.basic("output_dim", "same")])
reg("Softmax", inputs=["x"])
reg(
"Graph conv",
inputs=["x", "edges"],
outputs=["x"],
params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])],
)
reg(
"Activation",
inputs=["x"],
params=[P.options("type", ["ReLU", "Leaky ReLU", "Tanh", "Mish"])],
)
reg("Concatenate", inputs=["a", "b"], outputs=["x"])
reg("Add", inputs=["a", "b"], outputs=["x"])
reg("Subtract", inputs=["a", "b"], outputs=["x"])
reg("Multiply", inputs=["a", "b"], outputs=["x"])
reg("MSE loss", inputs=["x", "y"], outputs=["loss"])
reg("Triplet margin loss", inputs=["x", "x_pos", "x_neg"], outputs=["loss"])
reg("Cross-entropy loss", inputs=["x", "y"], outputs=["loss"])
reg(
"Optimizer",
inputs=["loss"],
outputs=[],
params=[
P.options(
"type",
[
"AdamW",
"Adafactor",
"Adagrad",
"SGD",
"Lion",
"Paged AdamW",
"Galore AdamW",
],
),
P.basic("lr", 0.001),
],
)
ops.register_passive_op(
ENV,
"Repeat",
inputs=[ops.Input(name="input", position="top", type="tensor")],
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
params=[
ops.Parameter.basic("times", 1, int),
ops.Parameter.basic("same_weights", True, bool),
],
)
ops.register_passive_op(
ENV,
"Recurrent chain",
inputs=[ops.Input(name="input", position="top", type="tensor")],
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
params=[],
)
def _to_id(*strings: str) -> str:
"""Replaces all non-alphanumeric characters with underscores."""
return "_".join("".join(c if c.isalnum() else "_" for c in s) for s in strings)
class ColumnSpec(pydantic.BaseModel):
df: str
column: str
class ModelMapping(pydantic.BaseModel):
map: dict[str, ColumnSpec]
@dataclasses.dataclass
class ModelConfig:
model: torch.nn.Module
model_inputs: list[str]
model_outputs: list[str]
loss_inputs: list[str]
loss: torch.nn.Module
optimizer: torch.optim.Optimizer
source_workspace: str | None = None
trained: bool = False
def _forward(self, inputs: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
model_inputs = [inputs[i] for i in self.model_inputs]
output = self.model(*model_inputs)
if not isinstance(output, tuple):
output = (output,)
values = {k: v for k, v in zip(self.model_outputs, output)}
return values
def inference(self, inputs: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
# TODO: Do multiple batches.
self.model.eval()
return self._forward(inputs)
def train(self, inputs: dict[str, torch.Tensor]) -> float:
"""Train the model for one epoch. Returns the loss."""
# TODO: Do multiple batches.
self.model.train()
self.optimizer.zero_grad()
values = self._forward(inputs)
values.update(inputs)
loss_inputs = [values[i] for i in self.loss_inputs]
loss = self.loss(*loss_inputs)
loss.backward()
self.optimizer.step()
return loss.item()
def copy(self):
"""Returns a copy of the model."""
c = dataclasses.replace(self)
c.model = copy.deepcopy(self.model)
return c
def default_display(self):
return {
"type": "model",
"model": {
"inputs": self.model_inputs,
"outputs": self.model_outputs,
"loss_inputs": self.loss_inputs,
"trained": self.trained,
},
}
def build_model(
ws: workspace.Workspace, inputs: dict[str, torch.Tensor]
) -> ModelConfig:
"""Builds the model described in the workspace."""
catalog = ops.CATALOGS[ENV]
optimizers = []
nodes = {}
for node in ws.nodes:
nodes[node.id] = node
if node.data.title == "Optimizer":
optimizers.append(node.id)
assert optimizers, "No optimizer found."
assert len(optimizers) == 1, f"More than one optimizer found: {optimizers}"
[optimizer] = optimizers
dependencies = {n.id: [] for n in ws.nodes}
in_edges = {}
out_edges = {}
# TODO: Dissolve repeat boxes here.
for e in ws.edges:
dependencies[e.target].append(e.source)
in_edges.setdefault(e.target, {}).setdefault(e.targetHandle, []).append(
(e.source, e.sourceHandle)
)
out_edges.setdefault(e.source, {}).setdefault(e.sourceHandle, []).append(
(e.target, e.targetHandle)
)
sizes = {}
for k, i in inputs.items():
sizes[k] = i.shape[-1]
ts = graphlib.TopologicalSorter(dependencies)
layers = []
loss_layers = []
in_loss = set()
cfg = {}
used_in_model = set()
made_in_model = set()
used_in_loss = set()
made_in_loss = set()
for node_id in ts.static_order():
node = nodes[node_id]
t = node.data.title
op = catalog[t]
p = op.convert_params(node.data.params)
for b in dependencies[node_id]:
if b in in_loss:
in_loss.add(node_id)
if "loss" in t:
in_loss.add(node_id)
inputs = {}
for n in in_edges.get(node_id, []):
for b, h in in_edges[node_id][n]:
i = _to_id(b, h)
inputs[n] = i
if node_id in in_loss:
used_in_loss.add(i)
else:
used_in_model.add(i)
outputs = {}
for out in out_edges.get(node_id, []):
i = _to_id(node_id, out)
outputs[out] = i
if inputs: # Nodes with no inputs are input nodes. Their outputs are not "made" by us.
if node_id in in_loss:
made_in_loss.add(i)
else:
made_in_model.add(i)
inputs = types.SimpleNamespace(**inputs)
outputs = types.SimpleNamespace(**outputs)
ls = loss_layers if node_id in in_loss else layers
match t:
case "Linear":
isize = sizes.get(inputs.x, 1)
osize = isize if p["output_dim"] == "same" else int(p["output_dim"])
ls.append((torch.nn.Linear(isize, osize), f"{inputs.x} -> {outputs.x}"))
sizes[outputs.x] = osize
case "Activation":
f = getattr(
torch.nn.functional, p["type"].name.lower().replace(" ", "_")
)
ls.append((f, f"{inputs.x} -> {outputs.x}"))
sizes[outputs.x] = sizes.get(inputs.x, 1)
case "MSE loss":
ls.append(
(
torch.nn.functional.mse_loss,
f"{inputs.x}, {inputs.y} -> {outputs.loss}",
)
)
cfg["model_inputs"] = list(used_in_model - made_in_model)
cfg["model_outputs"] = list(made_in_model & used_in_loss)
cfg["loss_inputs"] = list(used_in_loss - made_in_loss)
# Make sure the trained output is output from the last model layer.
outputs = ", ".join(cfg["model_outputs"])
layers.append((torch.nn.Identity(), f"{outputs} -> {outputs}"))
# Create model.
cfg["model"] = pyg.nn.Sequential(", ".join(cfg["model_inputs"]), layers)
# Make sure the loss is output from the last loss layer.
[(lossb, lossh)] = in_edges[optimizer]["loss"]
lossi = _to_id(lossb, lossh)
loss_layers.append((torch.nn.Identity(), f"{lossi} -> loss"))
# Create loss function.
cfg["loss"] = pyg.nn.Sequential(", ".join(cfg["loss_inputs"]), loss_layers)
assert not list(cfg["loss"].parameters()), (
f"loss should have no parameters: {list(cfg['loss'].parameters())}"
)
# Create optimizer.
op = catalog["Optimizer"]
p = op.convert_params(nodes[optimizer].data.params)
o = getattr(torch.optim, p["type"].name)
cfg["optimizer"] = o(cfg["model"].parameters(), lr=p["lr"])
return ModelConfig(**cfg)
def to_tensors(b: core.Bundle, m: ModelMapping | None) -> dict[str, torch.Tensor]:
"""Converts a tensor to the correct type for PyTorch. Ignores missing mappings."""
if m is None:
return {}
tensors = {}
for k, v in m.map.items():
if v.df in b.dfs and v.column in b.dfs[v.df]:
tensors[k] = torch.tensor(
b.dfs[v.df][v.column].to_list(), dtype=torch.float32
)
return tensors