File size: 10,382 Bytes
83b1026
 
daba3de
3cc3a0a
daba3de
b2852ba
 
09b8d25
83b1026
09b8d25
 
daba3de
1353683
83b1026
 
 
 
 
 
 
 
 
 
 
da1ea6b
83b1026
 
da1ea6b
83b1026
 
 
 
 
09b8d25
83b1026
 
 
 
1db4274
 
83b1026
1db4274
b662a59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b8d25
83b1026
 
 
09b8d25
83b1026
 
 
 
 
 
 
 
 
3cc3a0a
83b1026
09b8d25
 
 
 
 
 
 
83b1026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da1ea6b
 
e792fcf
 
 
 
 
3cc3a0a
 
 
 
b133985
09b8d25
1db4274
 
 
 
 
 
 
 
09b8d25
daba3de
3cc3a0a
daba3de
3cc3a0a
 
b2852ba
 
 
 
 
 
 
 
 
daba3de
3cc3a0a
 
 
 
 
 
 
daba3de
 
3cc3a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1353683
 
daba3de
 
1353683
 
b2852ba
 
 
 
 
 
 
daba3de
b2852ba
 
 
3cc3a0a
 
 
 
09b8d25
1353683
09b8d25
3cc3a0a
09b8d25
3cc3a0a
 
 
09b8d25
 
 
3cc3a0a
daba3de
 
3cc3a0a
09b8d25
3cc3a0a
daba3de
3cc3a0a
 
daba3de
 
 
e22b028
3cc3a0a
 
 
 
 
 
 
daba3de
 
 
 
3cc3a0a
 
 
1353683
 
3cc3a0a
 
 
daba3de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cc3a0a
 
 
daba3de
3cc3a0a
daba3de
 
3cc3a0a
1353683
 
 
daba3de
 
3cc3a0a
daba3de
 
 
 
 
3cc3a0a
daba3de
 
 
3cc3a0a
 
 
 
daba3de
3cc3a0a
daba3de
 
3cc3a0a
 
daba3de
3cc3a0a
 
 
 
1353683
 
 
3cc3a0a
 
1353683
 
daba3de
 
 
 
1353683
b2852ba
daba3de
 
 
 
1353683
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
"""Boxes for defining PyTorch models."""

import copy
import graphlib
import types

import pydantic
from lynxkite.core import ops, workspace
from lynxkite.core.ops import Parameter as P
import torch
import torch_geometric as pyg
import dataclasses
from . import core

ENV = "PyTorch model"


def reg(name, inputs=[], outputs=None, params=[]):
    if outputs is None:
        outputs = inputs
    return ops.register_passive_op(
        ENV,
        name,
        inputs=[
            ops.Input(name=name, position="bottom", type="tensor") for name in inputs
        ],
        outputs=[
            ops.Output(name=name, position="top", type="tensor") for name in outputs
        ],
        params=params,
    )


reg("Input: embedding", outputs=["x"])
reg("Input: graph edges", outputs=["edges"])
reg("Input: label", outputs=["y"])
reg("Input: positive sample", outputs=["x_pos"])
reg("Input: negative sample", outputs=["x_neg"])
reg("Input: sequential", outputs=["y"])
reg("Input: zeros", outputs=["x"])

reg("LSTM", inputs=["x", "h"], outputs=["x", "h"])
reg(
    "Neural ODE",
    inputs=["x"],
    params=[
        P.basic("relative_tolerance"),
        P.basic("absolute_tolerance"),
        P.options(
            "method",
            [
                "dopri8",
                "dopri5",
                "bosh3",
                "fehlberg2",
                "adaptive_heun",
                "euler",
                "midpoint",
                "rk4",
                "explicit_adams",
                "implicit_adams",
            ],
        ),
    ],
)
reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"])
reg("LayerNorm", inputs=["x"])
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)])
reg("Linear", inputs=["x"], params=[P.basic("output_dim", "same")])
reg("Softmax", inputs=["x"])
reg(
    "Graph conv",
    inputs=["x", "edges"],
    outputs=["x"],
    params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])],
)
reg(
    "Activation",
    inputs=["x"],
    params=[P.options("type", ["ReLU", "Leaky ReLU", "Tanh", "Mish"])],
)
reg("Concatenate", inputs=["a", "b"], outputs=["x"])
reg("Add", inputs=["a", "b"], outputs=["x"])
reg("Subtract", inputs=["a", "b"], outputs=["x"])
reg("Multiply", inputs=["a", "b"], outputs=["x"])
reg("MSE loss", inputs=["x", "y"], outputs=["loss"])
reg("Triplet margin loss", inputs=["x", "x_pos", "x_neg"], outputs=["loss"])
reg("Cross-entropy loss", inputs=["x", "y"], outputs=["loss"])
reg(
    "Optimizer",
    inputs=["loss"],
    outputs=[],
    params=[
        P.options(
            "type",
            [
                "AdamW",
                "Adafactor",
                "Adagrad",
                "SGD",
                "Lion",
                "Paged AdamW",
                "Galore AdamW",
            ],
        ),
        P.basic("lr", 0.001),
    ],
)

ops.register_passive_op(
    ENV,
    "Repeat",
    inputs=[ops.Input(name="input", position="top", type="tensor")],
    outputs=[ops.Output(name="output", position="bottom", type="tensor")],
    params=[
        ops.Parameter.basic("times", 1, int),
        ops.Parameter.basic("same_weights", True, bool),
    ],
)

ops.register_passive_op(
    ENV,
    "Recurrent chain",
    inputs=[ops.Input(name="input", position="top", type="tensor")],
    outputs=[ops.Output(name="output", position="bottom", type="tensor")],
    params=[],
)


def _to_id(*strings: str) -> str:
    """Replaces all non-alphanumeric characters with underscores."""
    return "_".join("".join(c if c.isalnum() else "_" for c in s) for s in strings)


class ColumnSpec(pydantic.BaseModel):
    df: str
    column: str


class ModelMapping(pydantic.BaseModel):
    map: dict[str, ColumnSpec]


@dataclasses.dataclass
class ModelConfig:
    model: torch.nn.Module
    model_inputs: list[str]
    model_outputs: list[str]
    loss_inputs: list[str]
    loss: torch.nn.Module
    optimizer: torch.optim.Optimizer
    source_workspace: str | None = None
    trained: bool = False

    def _forward(self, inputs: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
        model_inputs = [inputs[i] for i in self.model_inputs]
        output = self.model(*model_inputs)
        if not isinstance(output, tuple):
            output = (output,)
        values = {k: v for k, v in zip(self.model_outputs, output)}
        return values

    def inference(self, inputs: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
        # TODO: Do multiple batches.
        self.model.eval()
        return self._forward(inputs)

    def train(self, inputs: dict[str, torch.Tensor]) -> float:
        """Train the model for one epoch. Returns the loss."""
        # TODO: Do multiple batches.
        self.model.train()
        self.optimizer.zero_grad()
        values = self._forward(inputs)
        values.update(inputs)
        loss_inputs = [values[i] for i in self.loss_inputs]
        loss = self.loss(*loss_inputs)
        loss.backward()
        self.optimizer.step()
        return loss.item()

    def copy(self):
        """Returns a copy of the model."""
        c = dataclasses.replace(self)
        c.model = copy.deepcopy(self.model)
        return c

    def default_display(self):
        return {
            "type": "model",
            "model": {
                "inputs": self.model_inputs,
                "outputs": self.model_outputs,
                "loss_inputs": self.loss_inputs,
                "trained": self.trained,
            },
        }


def build_model(
    ws: workspace.Workspace, inputs: dict[str, torch.Tensor]
) -> ModelConfig:
    """Builds the model described in the workspace."""
    catalog = ops.CATALOGS[ENV]
    optimizers = []
    nodes = {}
    for node in ws.nodes:
        nodes[node.id] = node
        if node.data.title == "Optimizer":
            optimizers.append(node.id)
    assert optimizers, "No optimizer found."
    assert len(optimizers) == 1, f"More than one optimizer found: {optimizers}"
    [optimizer] = optimizers
    dependencies = {n.id: [] for n in ws.nodes}
    in_edges = {}
    out_edges = {}
    # TODO: Dissolve repeat boxes here.
    for e in ws.edges:
        dependencies[e.target].append(e.source)
        in_edges.setdefault(e.target, {}).setdefault(e.targetHandle, []).append(
            (e.source, e.sourceHandle)
        )
        out_edges.setdefault(e.source, {}).setdefault(e.sourceHandle, []).append(
            (e.target, e.targetHandle)
        )
    sizes = {}
    for k, i in inputs.items():
        sizes[k] = i.shape[-1]
    ts = graphlib.TopologicalSorter(dependencies)
    layers = []
    loss_layers = []
    in_loss = set()
    cfg = {}
    used_in_model = set()
    made_in_model = set()
    used_in_loss = set()
    made_in_loss = set()
    for node_id in ts.static_order():
        node = nodes[node_id]
        t = node.data.title
        op = catalog[t]
        p = op.convert_params(node.data.params)
        for b in dependencies[node_id]:
            if b in in_loss:
                in_loss.add(node_id)
        if "loss" in t:
            in_loss.add(node_id)
        inputs = {}
        for n in in_edges.get(node_id, []):
            for b, h in in_edges[node_id][n]:
                i = _to_id(b, h)
                inputs[n] = i
                if node_id in in_loss:
                    used_in_loss.add(i)
                else:
                    used_in_model.add(i)
        outputs = {}
        for out in out_edges.get(node_id, []):
            i = _to_id(node_id, out)
            outputs[out] = i
            if inputs:  # Nodes with no inputs are input nodes. Their outputs are not "made" by us.
                if node_id in in_loss:
                    made_in_loss.add(i)
                else:
                    made_in_model.add(i)
        inputs = types.SimpleNamespace(**inputs)
        outputs = types.SimpleNamespace(**outputs)
        ls = loss_layers if node_id in in_loss else layers
        match t:
            case "Linear":
                isize = sizes.get(inputs.x, 1)
                osize = isize if p["output_dim"] == "same" else int(p["output_dim"])
                ls.append((torch.nn.Linear(isize, osize), f"{inputs.x} -> {outputs.x}"))
                sizes[outputs.x] = osize
            case "Activation":
                f = getattr(
                    torch.nn.functional, p["type"].name.lower().replace(" ", "_")
                )
                ls.append((f, f"{inputs.x} -> {outputs.x}"))
                sizes[outputs.x] = sizes.get(inputs.x, 1)
            case "MSE loss":
                ls.append(
                    (
                        torch.nn.functional.mse_loss,
                        f"{inputs.x}, {inputs.y} -> {outputs.loss}",
                    )
                )
    cfg["model_inputs"] = list(used_in_model - made_in_model)
    cfg["model_outputs"] = list(made_in_model & used_in_loss)
    cfg["loss_inputs"] = list(used_in_loss - made_in_loss)
    # Make sure the trained output is output from the last model layer.
    outputs = ", ".join(cfg["model_outputs"])
    layers.append((torch.nn.Identity(), f"{outputs} -> {outputs}"))
    # Create model.
    cfg["model"] = pyg.nn.Sequential(", ".join(cfg["model_inputs"]), layers)
    # Make sure the loss is output from the last loss layer.
    [(lossb, lossh)] = in_edges[optimizer]["loss"]
    lossi = _to_id(lossb, lossh)
    loss_layers.append((torch.nn.Identity(), f"{lossi} -> loss"))
    # Create loss function.
    cfg["loss"] = pyg.nn.Sequential(", ".join(cfg["loss_inputs"]), loss_layers)
    assert not list(cfg["loss"].parameters()), (
        f"loss should have no parameters: {list(cfg['loss'].parameters())}"
    )
    # Create optimizer.
    op = catalog["Optimizer"]
    p = op.convert_params(nodes[optimizer].data.params)
    o = getattr(torch.optim, p["type"].name)
    cfg["optimizer"] = o(cfg["model"].parameters(), lr=p["lr"])
    return ModelConfig(**cfg)


def to_tensors(b: core.Bundle, m: ModelMapping | None) -> dict[str, torch.Tensor]:
    """Converts a tensor to the correct type for PyTorch. Ignores missing mappings."""
    if m is None:
        return {}
    tensors = {}
    for k, v in m.map.items():
        if v.df in b.dfs and v.column in b.dfs[v.df]:
            tensors[k] = torch.tensor(
                b.dfs[v.df][v.column].to_list(), dtype=torch.float32
            )
    return tensors