Spaces:
Running
Running
File size: 7,598 Bytes
56cf2e9 e513a41 56cf2e9 074be96 56cf2e9 6568046 56cf2e9 6568046 56cf2e9 074be96 56cf2e9 e513a41 56cf2e9 e513a41 56cf2e9 e513a41 6568046 e513a41 56cf2e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
"""Graph analytics executor and data types."""
import os
from lynxkite.core import ops, workspace
import dataclasses
import functools
import networkx as nx
import pandas as pd
import polars as pl
import traceback
import typing
ENV = "LynxKite Graph Analytics"
@dataclasses.dataclass
class RelationDefinition:
"""Defines a set of edges."""
df: str # The DataFrame that contains the edges.
source_column: (
str # The column in the edge DataFrame that contains the source node ID.
)
target_column: (
str # The column in the edge DataFrame that contains the target node ID.
)
source_table: str # The DataFrame that contains the source nodes.
target_table: str # The DataFrame that contains the target nodes.
source_key: str # The column in the source table that contains the node ID.
target_key: str # The column in the target table that contains the node ID.
name: str | None = None # Descriptive name for the relation.
@dataclasses.dataclass
class Bundle:
"""A collection of DataFrames and other data.
Can efficiently represent a knowledge graph (homogeneous or heterogeneous) or tabular data.
It can also carry other data, such as a trained model.
"""
dfs: dict[str, pd.DataFrame] = dataclasses.field(default_factory=dict)
relations: list[RelationDefinition] = dataclasses.field(default_factory=list)
other: dict[str, typing.Any] = None
@classmethod
def from_nx(cls, graph: nx.Graph):
edges = nx.to_pandas_edgelist(graph)
d = dict(graph.nodes(data=True))
nodes = pd.DataFrame(d.values(), index=d.keys())
nodes["id"] = nodes.index
if "index" in nodes.columns:
nodes.drop(columns=["index"], inplace=True)
return cls(
dfs={"edges": edges, "nodes": nodes},
relations=[
RelationDefinition(
df="edges",
source_column="source",
target_column="target",
source_table="nodes",
target_table="nodes",
source_key="id",
target_key="id",
)
],
)
@classmethod
def from_df(cls, df: pd.DataFrame):
return cls(dfs={"df": df})
def to_nx(self):
# TODO: Use relations.
graph = nx.DiGraph()
if "nodes" in self.dfs:
df = self.dfs["nodes"]
if df.index.name != "id":
df = df.set_index("id")
graph.add_nodes_from(df.to_dict("index").items())
if "edges" in self.dfs:
edges = self.dfs["edges"]
graph.add_edges_from(
[
(
e["source"],
e["target"],
{
k: e[k]
for k in edges.columns
if k not in ["source", "target"]
},
)
for e in edges.to_records()
]
)
return graph
def copy(self):
"""Returns a medium depth copy of the bundle. The Bundle is completely new, but the DataFrames and RelationDefinitions are shared."""
return Bundle(
dfs=dict(self.dfs),
relations=list(self.relations),
other=dict(self.other) if self.other else None,
)
def to_dict(self, limit: int = 100):
return {
"dataframes": {
name: {
"columns": [str(c) for c in df.columns],
"data": df_for_frontend(df, limit).values.tolist(),
}
for name, df in self.dfs.items()
},
"relations": [dataclasses.asdict(relation) for relation in self.relations],
"other": self.other,
}
def nx_node_attribute_func(name):
"""Decorator for wrapping a function that adds a NetworkX node attribute."""
def decorator(func):
@functools.wraps(func)
def wrapper(graph: nx.Graph, **kwargs):
graph = graph.copy()
attr = func(graph, **kwargs)
nx.set_node_attributes(graph, attr, name)
return graph
return wrapper
return decorator
def disambiguate_edges(ws: workspace.Workspace):
"""If an input plug is connected to multiple edges, keep only the last edge."""
catalog = ops.CATALOGS[ws.env]
nodes = {node.id: node for node in ws.nodes}
seen = set()
for edge in reversed(ws.edges):
dst_node = nodes[edge.target]
op = catalog.get(dst_node.data.title)
if op.inputs[edge.targetHandle].type == list[Bundle]:
# Takes multiple bundles as an input. No need to disambiguate.
continue
if (edge.target, edge.targetHandle) in seen:
i = ws.edges.index(edge)
del ws.edges[i]
if hasattr(ws, "_crdt"):
del ws._crdt["edges"][i]
seen.add((edge.target, edge.targetHandle))
@ops.register_executor(ENV)
async def execute(ws: workspace.Workspace):
catalog: dict[str, ops.Op] = ops.CATALOGS[ws.env]
disambiguate_edges(ws)
outputs = {}
nodes = {node.id: node for node in ws.nodes}
todo = set(nodes.keys())
progress = True
while progress:
progress = False
for id in list(todo):
node = nodes[id]
input_nodes = [edge.source for edge in ws.edges if edge.target == id]
if all(input in outputs for input in input_nodes):
# All inputs for this node are ready, we can compute the output.
todo.remove(id)
progress = True
_execute_node(node, ws, catalog, outputs)
def _execute_node(node, ws, catalog, outputs):
params = {**node.data.params}
op = catalog.get(node.data.title)
if not op:
node.publish_error("Operation not found in catalog")
return
node.publish_started()
# TODO: Handle multi-inputs.
input_map = {
edge.targetHandle: outputs[edge.source]
for edge in ws.edges
if edge.target == node.id
}
try:
# Convert inputs types to match operation signature.
inputs = []
for p in op.inputs.values():
if p.name not in input_map:
node.publish_error(f"Missing input: {p.name}")
return
x = input_map[p.name]
if p.type == nx.Graph and isinstance(x, Bundle):
x = x.to_nx()
elif p.type == Bundle and isinstance(x, nx.Graph):
x = Bundle.from_nx(x)
elif p.type == Bundle and isinstance(x, pd.DataFrame):
x = Bundle.from_df(x)
inputs.append(x)
result = op(*inputs, **params)
except Exception as e:
if os.environ.get("LYNXKITE_LOG_OP_ERRORS"):
traceback.print_exc()
node.publish_error(e)
return
outputs[node.id] = result.output
node.publish_result(result)
def df_for_frontend(df: pd.DataFrame, limit: int) -> pd.DataFrame:
"""Returns a DataFrame with values that are safe to send to the frontend."""
df = df[:limit]
if isinstance(df, pl.LazyFrame):
df = df.collect()
if isinstance(df, pl.DataFrame):
df = df.to_pandas()
# Convert non-numeric columns to strings.
for c in df.columns:
if not pd.api.types.is_numeric_dtype(df[c]):
df[c] = df[c].astype(str)
return df
|