Spaces:
Sleeping
Sleeping
A UI for mapping model bindings.
Browse files- examples/Model use +1094 -10
- lynxkite-app/web/src/index.css +8 -0
- lynxkite-app/web/src/workspace/nodes/NodeParameter.tsx +119 -1
- lynxkite-app/web/src/workspace/nodes/NodeWithParams.tsx +1 -0
- lynxkite-core/src/lynxkite/core/ops.py +14 -1
- lynxkite-core/src/lynxkite/core/workspace.py +3 -3
- lynxkite-graph-analytics/src/lynxkite_graph_analytics/core.py +18 -1
- lynxkite-graph-analytics/src/lynxkite_graph_analytics/lynxkite_ops.py +16 -11
- lynxkite-graph-analytics/src/lynxkite_graph_analytics/pytorch_model_ops.py +27 -8
examples/Model use
CHANGED
|
@@ -15,8 +15,22 @@
|
|
| 15 |
"targetHandle": "bundle"
|
| 16 |
},
|
| 17 |
{
|
| 18 |
-
"id": "
|
| 19 |
-
"source": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
"sourceHandle": "output",
|
| 21 |
"target": "Model inference 1",
|
| 22 |
"targetHandle": "bundle"
|
|
@@ -28,7 +42,30 @@
|
|
| 28 |
"data": {
|
| 29 |
"__execution_delay": 0.0,
|
| 30 |
"collapsed": null,
|
| 31 |
-
"display":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
"error": null,
|
| 33 |
"meta": {
|
| 34 |
"inputs": {
|
|
@@ -134,7 +171,46 @@
|
|
| 134 |
"data": {
|
| 135 |
"__execution_delay": 0.0,
|
| 136 |
"collapsed": null,
|
| 137 |
-
"display":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
"error": null,
|
| 139 |
"meta": {
|
| 140 |
"inputs": {
|
|
@@ -194,7 +270,7 @@
|
|
| 194 |
},
|
| 195 |
"params": {
|
| 196 |
"epochs": "1000",
|
| 197 |
-
"input_mapping": "{\"Input__embedding_1_x\": {\"df\": \"df_train\", \"column\": \"x\"}, \"Input__label_1_y\": {\"df\": \"df_train\", \"column\": \"y\" }}",
|
| 198 |
"model_workspace": "Model definition",
|
| 199 |
"save_as": "model"
|
| 200 |
},
|
|
@@ -205,8 +281,8 @@
|
|
| 205 |
"height": 519.0,
|
| 206 |
"id": "Train model 3",
|
| 207 |
"position": {
|
| 208 |
-
"x":
|
| 209 |
-
"y": -
|
| 210 |
},
|
| 211 |
"type": "basic",
|
| 212 |
"width": 640.0
|
|
@@ -216,7 +292,7 @@
|
|
| 216 |
"__execution_delay": 0.0,
|
| 217 |
"collapsed": null,
|
| 218 |
"display": null,
|
| 219 |
-
"error":
|
| 220 |
"meta": {
|
| 221 |
"inputs": {
|
| 222 |
"bundle": {
|
|
@@ -267,9 +343,9 @@
|
|
| 267 |
"type": "basic"
|
| 268 |
},
|
| 269 |
"params": {
|
| 270 |
-
"input_mapping": "{\"Input__embedding_1_x\": {\"df\": \"df_test\", \"column\": \"x\"}}",
|
| 271 |
"model_name": "model",
|
| 272 |
-
"output_mapping": "{\"Activation_2_x\": {\"df\": \"df_test\", \"column\": \"predicted\"}}"
|
| 273 |
},
|
| 274 |
"status": "done",
|
| 275 |
"title": "Model inference"
|
|
@@ -283,6 +359,1014 @@
|
|
| 283 |
},
|
| 284 |
"type": "basic",
|
| 285 |
"width": 410.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
}
|
| 287 |
]
|
| 288 |
}
|
|
|
|
| 15 |
"targetHandle": "bundle"
|
| 16 |
},
|
| 17 |
{
|
| 18 |
+
"id": "Model inference 1 View tables 1",
|
| 19 |
+
"source": "Model inference 1",
|
| 20 |
+
"sourceHandle": "output",
|
| 21 |
+
"target": "View tables 1",
|
| 22 |
+
"targetHandle": "bundle"
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"id": "Train/test split 1 Train model 1",
|
| 26 |
+
"source": "Train/test split 1",
|
| 27 |
+
"sourceHandle": "output",
|
| 28 |
+
"target": "Train model 1",
|
| 29 |
+
"targetHandle": "bundle"
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"id": "Train model 1 Model inference 1",
|
| 33 |
+
"source": "Train model 1",
|
| 34 |
"sourceHandle": "output",
|
| 35 |
"target": "Model inference 1",
|
| 36 |
"targetHandle": "bundle"
|
|
|
|
| 42 |
"data": {
|
| 43 |
"__execution_delay": 0.0,
|
| 44 |
"collapsed": null,
|
| 45 |
+
"display": {
|
| 46 |
+
"dataframes": {
|
| 47 |
+
"df": {
|
| 48 |
+
"columns": [
|
| 49 |
+
"x",
|
| 50 |
+
"y"
|
| 51 |
+
]
|
| 52 |
+
},
|
| 53 |
+
"df_test": {
|
| 54 |
+
"columns": [
|
| 55 |
+
"x",
|
| 56 |
+
"y"
|
| 57 |
+
]
|
| 58 |
+
},
|
| 59 |
+
"df_train": {
|
| 60 |
+
"columns": [
|
| 61 |
+
"x",
|
| 62 |
+
"y"
|
| 63 |
+
]
|
| 64 |
+
}
|
| 65 |
+
},
|
| 66 |
+
"other": {},
|
| 67 |
+
"relations": []
|
| 68 |
+
},
|
| 69 |
"error": null,
|
| 70 |
"meta": {
|
| 71 |
"inputs": {
|
|
|
|
| 171 |
"data": {
|
| 172 |
"__execution_delay": 0.0,
|
| 173 |
"collapsed": null,
|
| 174 |
+
"display": {
|
| 175 |
+
"dataframes": {
|
| 176 |
+
"df": {
|
| 177 |
+
"columns": [
|
| 178 |
+
"x",
|
| 179 |
+
"y"
|
| 180 |
+
]
|
| 181 |
+
},
|
| 182 |
+
"df_test": {
|
| 183 |
+
"columns": [
|
| 184 |
+
"x",
|
| 185 |
+
"y"
|
| 186 |
+
]
|
| 187 |
+
},
|
| 188 |
+
"df_train": {
|
| 189 |
+
"columns": [
|
| 190 |
+
"x",
|
| 191 |
+
"y"
|
| 192 |
+
]
|
| 193 |
+
}
|
| 194 |
+
},
|
| 195 |
+
"other": {
|
| 196 |
+
"model": {
|
| 197 |
+
"model": {
|
| 198 |
+
"inputs": [
|
| 199 |
+
"Input__embedding_1_x"
|
| 200 |
+
],
|
| 201 |
+
"loss_inputs": [
|
| 202 |
+
"Activation_2_x",
|
| 203 |
+
"Input__label_1_y"
|
| 204 |
+
],
|
| 205 |
+
"outputs": [
|
| 206 |
+
"Activation_2_x"
|
| 207 |
+
]
|
| 208 |
+
},
|
| 209 |
+
"type": "model"
|
| 210 |
+
}
|
| 211 |
+
},
|
| 212 |
+
"relations": []
|
| 213 |
+
},
|
| 214 |
"error": null,
|
| 215 |
"meta": {
|
| 216 |
"inputs": {
|
|
|
|
| 270 |
},
|
| 271 |
"params": {
|
| 272 |
"epochs": "1000",
|
| 273 |
+
"input_mapping": "{\"map\": {\"Input__embedding_1_x\": {\"df\": \"df_train\", \"column\": \"x\"}, \"Input__label_1_y\": {\"df\": \"df_train\", \"column\": \"y\" }}}",
|
| 274 |
"model_workspace": "Model definition",
|
| 275 |
"save_as": "model"
|
| 276 |
},
|
|
|
|
| 281 |
"height": 519.0,
|
| 282 |
"id": "Train model 3",
|
| 283 |
"position": {
|
| 284 |
+
"x": 722.5912720951791,
|
| 285 |
+
"y": -784.0614755260641
|
| 286 |
},
|
| 287 |
"type": "basic",
|
| 288 |
"width": 640.0
|
|
|
|
| 292 |
"__execution_delay": 0.0,
|
| 293 |
"collapsed": null,
|
| 294 |
"display": null,
|
| 295 |
+
"error": "'Input__embedding_1_x'",
|
| 296 |
"meta": {
|
| 297 |
"inputs": {
|
| 298 |
"bundle": {
|
|
|
|
| 343 |
"type": "basic"
|
| 344 |
},
|
| 345 |
"params": {
|
| 346 |
+
"input_mapping": "{\"map\": {\"Input__embedding_1_x\": {\"df\": \"df_test\", \"column\": \"x\"}}}",
|
| 347 |
"model_name": "model",
|
| 348 |
+
"output_mapping": "{\"map\": {\"Activation_2_x\": {\"df\": \"df_test\", \"column\": \"predicted\"}}}"
|
| 349 |
},
|
| 350 |
"status": "done",
|
| 351 |
"title": "Model inference"
|
|
|
|
| 359 |
},
|
| 360 |
"type": "basic",
|
| 361 |
"width": 410.0
|
| 362 |
+
},
|
| 363 |
+
{
|
| 364 |
+
"data": {
|
| 365 |
+
"display": {
|
| 366 |
+
"dataframes": {
|
| 367 |
+
"df": {
|
| 368 |
+
"columns": [
|
| 369 |
+
"x",
|
| 370 |
+
"y"
|
| 371 |
+
],
|
| 372 |
+
"data": [
|
| 373 |
+
[
|
| 374 |
+
"[0.52046251 0.45887971 0.72169858 0.29517919]",
|
| 375 |
+
"[1.52046251 1.45887971 1.72169852 1.29517913]"
|
| 376 |
+
],
|
| 377 |
+
[
|
| 378 |
+
"[0.85706753 0.61447072 0.41741937 0.85147089]",
|
| 379 |
+
"[1.85706758 1.61447072 1.41741943 1.85147095]"
|
| 380 |
+
],
|
| 381 |
+
[
|
| 382 |
+
"[0.11560339 0.57495481 0.76535827 0.0391947 ]",
|
| 383 |
+
"[1.11560345 1.57495475 1.76535821 1.0391947 ]"
|
| 384 |
+
],
|
| 385 |
+
[
|
| 386 |
+
"[0.19409031 0.68692201 0.60667384 0.57829887]",
|
| 387 |
+
"[1.19409037 1.68692207 1.60667384 1.57829881]"
|
| 388 |
+
],
|
| 389 |
+
[
|
| 390 |
+
"[0.76807946 0.98855817 0.08259124 0.01730657]",
|
| 391 |
+
"[1.76807952 1.98855817 1.0825913 1.01730657]"
|
| 392 |
+
],
|
| 393 |
+
[
|
| 394 |
+
"[0.67269951 0.10478973 0.5584439 0.83605725]",
|
| 395 |
+
"[1.67269945 1.10478973 1.5584439 1.83605719]"
|
| 396 |
+
],
|
| 397 |
+
[
|
| 398 |
+
"[0.18686318 0.49356437 0.51323432 0.75392658]",
|
| 399 |
+
"[1.18686318 1.49356437 1.51323438 1.75392652]"
|
| 400 |
+
],
|
| 401 |
+
[
|
| 402 |
+
"[0.18149549 0.30520517 0.30946714 0.16786289]",
|
| 403 |
+
"[1.18149543 1.30520511 1.30946708 1.16786289]"
|
| 404 |
+
],
|
| 405 |
+
[
|
| 406 |
+
"[4.27091718e-01 4.89909172e-01 6.92297399e-01 2.57611275e-04]",
|
| 407 |
+
"[1.42709172 1.48990917 1.69229746 1.00025761]"
|
| 408 |
+
],
|
| 409 |
+
[
|
| 410 |
+
"[0.32225502 0.16999388 0.05823922 0.9628762 ]",
|
| 411 |
+
"[1.32225502 1.16999388 1.05823922 1.9628762 ]"
|
| 412 |
+
],
|
| 413 |
+
[
|
| 414 |
+
"[0.50783676 0.04156506 0.21984279 0.8454656 ]",
|
| 415 |
+
"[1.50783682 1.04156506 1.21984279 1.84546566]"
|
| 416 |
+
],
|
| 417 |
+
[
|
| 418 |
+
"[0.98324287 0.99464184 0.14008355 0.47651017]",
|
| 419 |
+
"[1.98324287 1.99464178 1.14008355 1.47651017]"
|
| 420 |
+
],
|
| 421 |
+
[
|
| 422 |
+
"[0.11693293 0.49860179 0.55020827 0.88832849]",
|
| 423 |
+
"[1.11693287 1.49860179 1.55020833 1.88832855]"
|
| 424 |
+
],
|
| 425 |
+
[
|
| 426 |
+
"[0.48959708 0.48549271 0.32688856 0.356677 ]",
|
| 427 |
+
"[1.48959708 1.48549271 1.32688856 1.35667706]"
|
| 428 |
+
],
|
| 429 |
+
[
|
| 430 |
+
"[0.50272274 0.54912758 0.17663097 0.79070699]",
|
| 431 |
+
"[1.50272274 1.54912758 1.17663097 1.79070699]"
|
| 432 |
+
],
|
| 433 |
+
[
|
| 434 |
+
"[0.04508126 0.76880038 0.80721325 0.62542385]",
|
| 435 |
+
"[1.04508126 1.76880038 1.80721331 1.62542391]"
|
| 436 |
+
],
|
| 437 |
+
[
|
| 438 |
+
"[0.19908059 0.17570406 0.51475513 0.1893943 ]",
|
| 439 |
+
"[1.19908059 1.175704 1.51475513 1.18939424]"
|
| 440 |
+
],
|
| 441 |
+
[
|
| 442 |
+
"[0.40167677 0.25953674 0.9407078 0.76308483]",
|
| 443 |
+
"[1.40167677 1.25953674 1.9407078 1.76308489]"
|
| 444 |
+
],
|
| 445 |
+
[
|
| 446 |
+
"[0.2480728 0.21694398 0.63941365 0.57128876]",
|
| 447 |
+
"[1.24807286 1.21694398 1.6394136 1.57128882]"
|
| 448 |
+
],
|
| 449 |
+
[
|
| 450 |
+
"[0.24388778 0.07268471 0.68350857 0.73431659]",
|
| 451 |
+
"[1.24388778 1.07268476 1.68350863 1.73431659]"
|
| 452 |
+
],
|
| 453 |
+
[
|
| 454 |
+
"[0.62569475 0.9881897 0.83639616 0.9828859 ]",
|
| 455 |
+
"[1.62569475 1.9881897 1.83639622 1.98288584]"
|
| 456 |
+
],
|
| 457 |
+
[
|
| 458 |
+
"[0.56922203 0.98222166 0.76851749 0.28615737]",
|
| 459 |
+
"[1.56922197 1.9822216 1.76851749 1.28615737]"
|
| 460 |
+
],
|
| 461 |
+
[
|
| 462 |
+
"[0.88776821 0.51636773 0.30333066 0.32230979]",
|
| 463 |
+
"[1.88776827 1.51636767 1.30333066 1.32230973]"
|
| 464 |
+
],
|
| 465 |
+
[
|
| 466 |
+
"[0.90817457 0.89270043 0.38583666 0.66566533]",
|
| 467 |
+
"[1.90817451 1.89270043 1.3858366 1.66566539]"
|
| 468 |
+
],
|
| 469 |
+
[
|
| 470 |
+
"[0.48507756 0.80808765 0.77162558 0.47834778]",
|
| 471 |
+
"[1.48507762 1.80808759 1.77162552 1.47834778]"
|
| 472 |
+
],
|
| 473 |
+
[
|
| 474 |
+
"[0.68062544 0.98093534 0.14778823 0.53244978]",
|
| 475 |
+
"[1.68062544 1.98093534 1.14778829 1.53244972]"
|
| 476 |
+
],
|
| 477 |
+
[
|
| 478 |
+
"[0.31518555 0.49643308 0.11509258 0.95458382]",
|
| 479 |
+
"[1.31518555 1.49643302 1.11509252 1.95458388]"
|
| 480 |
+
],
|
| 481 |
+
[
|
| 482 |
+
"[0.79121011 0.54161114 0.69369799 0.1520769 ]",
|
| 483 |
+
"[1.79121017 1.54161119 1.69369793 1.15207696]"
|
| 484 |
+
],
|
| 485 |
+
[
|
| 486 |
+
"[0.79423058 0.07138705 0.061777 0.18766576]",
|
| 487 |
+
"[1.79423058 1.07138705 1.061777 1.1876657 ]"
|
| 488 |
+
],
|
| 489 |
+
[
|
| 490 |
+
"[0.23942459 0.90487361 0.69337189 0.65089428]",
|
| 491 |
+
"[1.23942459 1.90487361 1.69337189 1.65089428]"
|
| 492 |
+
],
|
| 493 |
+
[
|
| 494 |
+
"[0.94516498 0.08422136 0.5608117 0.07652664]",
|
| 495 |
+
"[1.94516492 1.08422136 1.56081176 1.07652664]"
|
| 496 |
+
],
|
| 497 |
+
[
|
| 498 |
+
"[0.26661873 0.45946234 0.13510543 0.81294441]",
|
| 499 |
+
"[1.26661873 1.4594624 1.13510537 1.81294441]"
|
| 500 |
+
],
|
| 501 |
+
[
|
| 502 |
+
"[0.30754459 0.77694583 0.09278506 0.38326019]",
|
| 503 |
+
"[1.30754459 1.77694583 1.09278512 1.38326025]"
|
| 504 |
+
],
|
| 505 |
+
[
|
| 506 |
+
"[0.27845025 0.32472342 0.82203609 0.77107543]",
|
| 507 |
+
"[1.27845025 1.32472348 1.82203603 1.77107549]"
|
| 508 |
+
],
|
| 509 |
+
[
|
| 510 |
+
"[0.4827103 0.10563457 0.98858833 0.82286644]",
|
| 511 |
+
"[1.48271036 1.10563457 1.98858833 1.82286644]"
|
| 512 |
+
],
|
| 513 |
+
[
|
| 514 |
+
"[0.98033333 0.97656083 0.38939917 0.81491041]",
|
| 515 |
+
"[1.98033333 1.97656083 1.38939917 1.81491041]"
|
| 516 |
+
],
|
| 517 |
+
[
|
| 518 |
+
"[0.74064726 0.4155122 0.09800029 0.49930882]",
|
| 519 |
+
"[1.74064732 1.4155122 1.09800029 1.49930882]"
|
| 520 |
+
],
|
| 521 |
+
[
|
| 522 |
+
"[0.78956431 0.87284744 0.06880784 0.03455889]",
|
| 523 |
+
"[1.78956437 1.87284744 1.06880784 1.03455889]"
|
| 524 |
+
],
|
| 525 |
+
[
|
| 526 |
+
"[0.94221359 0.57740951 0.98649532 0.40934443]",
|
| 527 |
+
"[1.94221354 1.57740951 1.98649526 1.40934443]"
|
| 528 |
+
],
|
| 529 |
+
[
|
| 530 |
+
"[0.00497234 0.39319336 0.57054168 0.75150961]",
|
| 531 |
+
"[1.00497234 1.39319336 1.57054162 1.75150967]"
|
| 532 |
+
],
|
| 533 |
+
[
|
| 534 |
+
"[0.44330525 0.09997386 0.89025736 0.90507984]",
|
| 535 |
+
"[1.44330525 1.09997392 1.89025736 1.90507984]"
|
| 536 |
+
],
|
| 537 |
+
[
|
| 538 |
+
"[0.72290605 0.96945059 0.68354797 0.15270454]",
|
| 539 |
+
"[1.72290611 1.96945059 1.68354797 1.15270448]"
|
| 540 |
+
],
|
| 541 |
+
[
|
| 542 |
+
"[0.75292218 0.81470108 0.49657214 0.56217098]",
|
| 543 |
+
"[1.75292218 1.81470108 1.49657214 1.56217098]"
|
| 544 |
+
],
|
| 545 |
+
[
|
| 546 |
+
"[0.33480108 0.59181517 0.76198453 0.98062384]",
|
| 547 |
+
"[1.33480108 1.59181523 1.76198459 1.98062384]"
|
| 548 |
+
],
|
| 549 |
+
[
|
| 550 |
+
"[0.52784437 0.54268694 0.12358981 0.72116476]",
|
| 551 |
+
"[1.52784443 1.54268694 1.12358975 1.7211647 ]"
|
| 552 |
+
],
|
| 553 |
+
[
|
| 554 |
+
"[0.73217702 0.65233225 0.44077861 0.33837909]",
|
| 555 |
+
"[1.73217702 1.65233231 1.44077861 1.33837914]"
|
| 556 |
+
],
|
| 557 |
+
[
|
| 558 |
+
"[0.34084332 0.73018837 0.54168713 0.91440833]",
|
| 559 |
+
"[1.34084332 1.73018837 1.54168713 1.91440833]"
|
| 560 |
+
],
|
| 561 |
+
[
|
| 562 |
+
"[0.60110539 0.3618983 0.32342511 0.98672163]",
|
| 563 |
+
"[1.60110545 1.3618983 1.32342505 1.98672163]"
|
| 564 |
+
],
|
| 565 |
+
[
|
| 566 |
+
"[0.77427191 0.21829212 0.12769502 0.74303615]",
|
| 567 |
+
"[1.77427197 1.21829212 1.12769508 1.74303615]"
|
| 568 |
+
],
|
| 569 |
+
[
|
| 570 |
+
"[0.08107251 0.2602725 0.18861133 0.44833237]",
|
| 571 |
+
"[1.08107257 1.2602725 1.18861127 1.44833231]"
|
| 572 |
+
],
|
| 573 |
+
[
|
| 574 |
+
"[0.59812403 0.78395379 0.0291847 0.81814629]",
|
| 575 |
+
"[1.59812403 1.78395379 1.0291847 1.81814623]"
|
| 576 |
+
],
|
| 577 |
+
[
|
| 578 |
+
"[0.93488538 0.73882395 0.37345302 0.0274905 ]",
|
| 579 |
+
"[1.93488538 1.73882389 1.37345302 1.0274905 ]"
|
| 580 |
+
],
|
| 581 |
+
[
|
| 582 |
+
"[0.30631393 0.48311198 0.87847513 0.67559886]",
|
| 583 |
+
"[1.30631399 1.48311198 1.87847519 1.67559886]"
|
| 584 |
+
],
|
| 585 |
+
[
|
| 586 |
+
"[0.18720162 0.74115586 0.98626411 0.30355608]",
|
| 587 |
+
"[1.18720162 1.74115586 1.98626411 1.30355608]"
|
| 588 |
+
],
|
| 589 |
+
[
|
| 590 |
+
"[0.85566247 0.83362883 0.48424995 0.25265992]",
|
| 591 |
+
"[1.85566247 1.83362889 1.48424995 1.25265992]"
|
| 592 |
+
],
|
| 593 |
+
[
|
| 594 |
+
"[0.95928186 0.84273899 0.71514636 0.38619852]",
|
| 595 |
+
"[1.95928192 1.84273899 1.7151463 1.38619852]"
|
| 596 |
+
],
|
| 597 |
+
[
|
| 598 |
+
"[0.32565445 0.90939188 0.07488042 0.13730896]",
|
| 599 |
+
"[1.32565451 1.90939188 1.07488036 1.13730896]"
|
| 600 |
+
],
|
| 601 |
+
[
|
| 602 |
+
"[0.9829582 0.59269661 0.40120947 0.95487177]",
|
| 603 |
+
"[1.9829582 1.59269667 1.40120947 1.95487177]"
|
| 604 |
+
],
|
| 605 |
+
[
|
| 606 |
+
"[0.79905868 0.89367443 0.75429088 0.3190186 ]",
|
| 607 |
+
"[1.79905868 1.89367437 1.75429082 1.3190186 ]"
|
| 608 |
+
],
|
| 609 |
+
[
|
| 610 |
+
"[0.54914117 0.03810108 0.87531954 0.73044223]",
|
| 611 |
+
"[1.54914117 1.03810108 1.87531948 1.73044229]"
|
| 612 |
+
],
|
| 613 |
+
[
|
| 614 |
+
"[0.67418337 0.79634351 0.23229051 0.71345252]",
|
| 615 |
+
"[1.67418337 1.79634356 1.23229051 1.71345258]"
|
| 616 |
+
],
|
| 617 |
+
[
|
| 618 |
+
"[0.87285906 0.48354989 0.39394957 0.59456545]",
|
| 619 |
+
"[1.872859 1.48354983 1.39394951 1.59456539]"
|
| 620 |
+
],
|
| 621 |
+
[
|
| 622 |
+
"[0.81788456 0.58174163 0.29376316 0.7971254 ]",
|
| 623 |
+
"[1.81788456 1.58174157 1.29376316 1.79712534]"
|
| 624 |
+
],
|
| 625 |
+
[
|
| 626 |
+
"[0.94559073 0.65736622 0.25761551 0.48553199]",
|
| 627 |
+
"[1.94559073 1.65736628 1.25761557 1.48553205]"
|
| 628 |
+
],
|
| 629 |
+
[
|
| 630 |
+
"[0.60075855 0.12234765 0.00614399 0.30560958]",
|
| 631 |
+
"[1.60075855 1.12234759 1.00614405 1.30560958]"
|
| 632 |
+
],
|
| 633 |
+
[
|
| 634 |
+
"[0.39147133 0.29854035 0.84663737 0.58175623]",
|
| 635 |
+
"[1.39147139 1.29854035 1.84663737 1.58175623]"
|
| 636 |
+
],
|
| 637 |
+
[
|
| 638 |
+
"[0.02162331 0.81861657 0.92468154 0.07808572]",
|
| 639 |
+
"[1.02162337 1.81861663 1.92468154 1.07808566]"
|
| 640 |
+
],
|
| 641 |
+
[
|
| 642 |
+
"[0.02235305 0.52774918 0.7331115 0.84358269]",
|
| 643 |
+
"[1.02235305 1.52774918 1.7331115 1.84358263]"
|
| 644 |
+
],
|
| 645 |
+
[
|
| 646 |
+
"[0.6080932 0.56563014 0.32107437 0.72599429]",
|
| 647 |
+
"[1.60809326 1.5656302 1.32107437 1.72599435]"
|
| 648 |
+
],
|
| 649 |
+
[
|
| 650 |
+
"[0.67447788 0.6125319 0.98007888 0.65968603]",
|
| 651 |
+
"[1.67447782 1.6125319 1.98007894 1.65968609]"
|
| 652 |
+
],
|
| 653 |
+
[
|
| 654 |
+
"[0.47963417 0.81818312 0.48720706 0.49339259]",
|
| 655 |
+
"[1.47963417 1.81818318 1.48720706 1.49339259]"
|
| 656 |
+
],
|
| 657 |
+
[
|
| 658 |
+
"[0.9630242 0.76359051 0.24853623 0.76881069]",
|
| 659 |
+
"[1.96302414 1.76359057 1.24853623 1.76881075]"
|
| 660 |
+
],
|
| 661 |
+
[
|
| 662 |
+
"[0.60609657 0.96257663 0.19292736 0.95702219]",
|
| 663 |
+
"[1.60609651 1.96257663 1.19292736 1.95702219]"
|
| 664 |
+
],
|
| 665 |
+
[
|
| 666 |
+
"[0.80654246 0.08253473 0.74478531 0.71257162]",
|
| 667 |
+
"[1.8065424 1.08253479 1.74478531 1.71257162]"
|
| 668 |
+
],
|
| 669 |
+
[
|
| 670 |
+
"[0.70167565 0.26930219 0.5660674 0.61194974]",
|
| 671 |
+
"[1.70167565 1.26930213 1.56606746 1.61194968]"
|
| 672 |
+
],
|
| 673 |
+
[
|
| 674 |
+
"[0.76933283 0.86241865 0.44114518 0.65644735]",
|
| 675 |
+
"[1.76933289 1.86241865 1.44114518 1.65644741]"
|
| 676 |
+
],
|
| 677 |
+
[
|
| 678 |
+
"[0.59492421 0.90274489 0.38069052 0.46101224]",
|
| 679 |
+
"[1.59492421 1.90274489 1.38069057 1.46101224]"
|
| 680 |
+
],
|
| 681 |
+
[
|
| 682 |
+
"[0.15064228 0.03198934 0.25754827 0.51484001]",
|
| 683 |
+
"[1.15064228 1.03198934 1.25754833 1.51484001]"
|
| 684 |
+
],
|
| 685 |
+
[
|
| 686 |
+
"[0.12024075 0.21342516 0.56858408 0.58644271]",
|
| 687 |
+
"[1.12024069 1.21342516 1.56858408 1.58644271]"
|
| 688 |
+
],
|
| 689 |
+
[
|
| 690 |
+
"[0.91730917 0.22574073 0.09591609 0.33056474]",
|
| 691 |
+
"[1.91730917 1.22574067 1.09591603 1.33056474]"
|
| 692 |
+
],
|
| 693 |
+
[
|
| 694 |
+
"[0.49691743 0.61873293 0.90698647 0.94486356]",
|
| 695 |
+
"[1.49691749 1.61873293 1.90698647 1.94486356]"
|
| 696 |
+
],
|
| 697 |
+
[
|
| 698 |
+
"[0.6032477 0.83361369 0.18538666 0.19108021]",
|
| 699 |
+
"[1.60324764 1.83361363 1.18538666 1.19108021]"
|
| 700 |
+
],
|
| 701 |
+
[
|
| 702 |
+
"[0.63235509 0.70352674 0.96188956 0.46240485]",
|
| 703 |
+
"[1.63235509 1.70352674 1.96188951 1.46240485]"
|
| 704 |
+
],
|
| 705 |
+
[
|
| 706 |
+
"[0.37959969 0.42820001 0.10690689 0.96353984]",
|
| 707 |
+
"[1.37959969 1.42820001 1.10690689 1.96353984]"
|
| 708 |
+
],
|
| 709 |
+
[
|
| 710 |
+
"[0.49607176 0.1922397 0.46640229 0.78321403]",
|
| 711 |
+
"[1.49607182 1.19223976 1.46640229 1.78321409]"
|
| 712 |
+
],
|
| 713 |
+
[
|
| 714 |
+
"[0.40234613 0.54987347 0.49542785 0.54153186]",
|
| 715 |
+
"[1.40234613 1.54987347 1.49542785 1.5415318 ]"
|
| 716 |
+
],
|
| 717 |
+
[
|
| 718 |
+
"[0.80893755 0.92237449 0.88346356 0.93164903]",
|
| 719 |
+
"[1.80893755 1.92237449 1.88346362 1.93164897]"
|
| 720 |
+
],
|
| 721 |
+
[
|
| 722 |
+
"[0.12858278 0.09930819 0.83222693 0.72485673]",
|
| 723 |
+
"[1.12858272 1.09930825 1.83222699 1.72485673]"
|
| 724 |
+
],
|
| 725 |
+
[
|
| 726 |
+
"[0.72470158 0.4940322 0.41027349 0.89364016]",
|
| 727 |
+
"[1.72470164 1.49403214 1.41027355 1.89364016]"
|
| 728 |
+
],
|
| 729 |
+
[
|
| 730 |
+
"[0.47856545 0.46267092 0.6376707 0.84747767]",
|
| 731 |
+
"[1.47856545 1.46267092 1.63767076 1.84747767]"
|
| 732 |
+
],
|
| 733 |
+
[
|
| 734 |
+
"[0.49584109 0.80599248 0.07096875 0.75872749]",
|
| 735 |
+
"[1.49584103 1.80599248 1.07096875 1.75872755]"
|
| 736 |
+
],
|
| 737 |
+
[
|
| 738 |
+
"[0.43500566 0.66041756 0.80293626 0.96224713]",
|
| 739 |
+
"[1.43500566 1.66041756 1.80293632 1.96224713]"
|
| 740 |
+
],
|
| 741 |
+
[
|
| 742 |
+
"[0.78397602 0.74223626 0.26603186 0.41664881]",
|
| 743 |
+
"[1.78397608 1.74223626 1.26603186 1.41664886]"
|
| 744 |
+
],
|
| 745 |
+
[
|
| 746 |
+
"[0.28942841 0.05601001 0.33039129 0.27781558]",
|
| 747 |
+
"[1.28942847 1.05601001 1.33039129 1.27781558]"
|
| 748 |
+
],
|
| 749 |
+
[
|
| 750 |
+
"[0.68094063 0.45189077 0.22661722 0.37354094]",
|
| 751 |
+
"[1.68094063 1.45189071 1.22661722 1.37354088]"
|
| 752 |
+
],
|
| 753 |
+
[
|
| 754 |
+
"[0.43681622 0.74680805 0.83598751 0.12414402]",
|
| 755 |
+
"[1.43681622 1.74680805 1.83598757 1.12414408]"
|
| 756 |
+
],
|
| 757 |
+
[
|
| 758 |
+
"[0.47870928 0.17129105 0.27300501 0.20634609]",
|
| 759 |
+
"[1.47870922 1.17129111 1.27300501 1.20634604]"
|
| 760 |
+
],
|
| 761 |
+
[
|
| 762 |
+
"[0.72795159 0.79317838 0.27832931 0.96576637]",
|
| 763 |
+
"[1.72795153 1.79317832 1.27832937 1.96576643]"
|
| 764 |
+
],
|
| 765 |
+
[
|
| 766 |
+
"[0.87608397 0.93200487 0.80169648 0.37758952]",
|
| 767 |
+
"[1.87608397 1.93200493 1.80169654 1.37758946]"
|
| 768 |
+
],
|
| 769 |
+
[
|
| 770 |
+
"[0.68891573 0.25576538 0.96339929 0.503833 ]",
|
| 771 |
+
"[1.68891573 1.25576544 1.96339929 1.50383306]"
|
| 772 |
+
]
|
| 773 |
+
]
|
| 774 |
+
},
|
| 775 |
+
"df_test": {
|
| 776 |
+
"columns": [
|
| 777 |
+
"x",
|
| 778 |
+
"y",
|
| 779 |
+
"predicted"
|
| 780 |
+
],
|
| 781 |
+
"data": [
|
| 782 |
+
[
|
| 783 |
+
"[0.52046251 0.45887971 0.72169858 0.29517919]",
|
| 784 |
+
"[1.52046251 1.45887971 1.72169852 1.29517913]",
|
| 785 |
+
"[1.5168578624725342, 1.450861930847168, 1.7133464813232422, 1.3041404485702515]"
|
| 786 |
+
],
|
| 787 |
+
[
|
| 788 |
+
"[0.78956431 0.87284744 0.06880784 0.03455889]",
|
| 789 |
+
"[1.78956437 1.87284744 1.06880784 1.03455889]",
|
| 790 |
+
"[1.7899272441864014, 1.829580307006836, 1.0702992677688599, 1.0265709161758423]"
|
| 791 |
+
],
|
| 792 |
+
[
|
| 793 |
+
"[0.49607176 0.1922397 0.46640229 0.78321403]",
|
| 794 |
+
"[1.49607182 1.19223976 1.46640229 1.78321409]",
|
| 795 |
+
"[1.4901000261306763, 1.193819284439087, 1.4632138013839722, 1.7822779417037964]"
|
| 796 |
+
],
|
| 797 |
+
[
|
| 798 |
+
"[0.49691743 0.61873293 0.90698647 0.94486356]",
|
| 799 |
+
"[1.49691749 1.61873293 1.90698647 1.94486356]",
|
| 800 |
+
"[1.4999868869781494, 1.6656270027160645, 1.9074199199676514, 1.9556759595870972]"
|
| 801 |
+
],
|
| 802 |
+
[
|
| 803 |
+
"[0.59812403 0.78395379 0.0291847 0.81814629]",
|
| 804 |
+
"[1.59812403 1.78395379 1.0291847 1.81814623]",
|
| 805 |
+
"[1.6044235229492188, 1.7707669734954834, 1.0426081418991089, 1.7988944053649902]"
|
| 806 |
+
],
|
| 807 |
+
[
|
| 808 |
+
"[0.67447788 0.6125319 0.98007888 0.65968603]",
|
| 809 |
+
"[1.67447782 1.6125319 1.98007894 1.65968609]",
|
| 810 |
+
"[1.6721093654632568, 1.6624714136123657, 1.9726766347885132, 1.6813924312591553]"
|
| 811 |
+
],
|
| 812 |
+
[
|
| 813 |
+
"[0.18720162 0.74115586 0.98626411 0.30355608]",
|
| 814 |
+
"[1.18720162 1.74115586 1.98626411 1.30355608]",
|
| 815 |
+
"[1.1961991786956787, 1.723442792892456, 1.9852817058563232, 1.3066248893737793]"
|
| 816 |
+
],
|
| 817 |
+
[
|
| 818 |
+
"[0.74064726 0.4155122 0.09800029 0.49930882]",
|
| 819 |
+
"[1.74064732 1.4155122 1.09800029 1.49930882]",
|
| 820 |
+
"[1.7340764999389648, 1.3968157768249512, 1.0968588590621948, 1.493086814880371]"
|
| 821 |
+
],
|
| 822 |
+
[
|
| 823 |
+
"[0.70167565 0.26930219 0.5660674 0.61194974]",
|
| 824 |
+
"[1.70167565 1.26930213 1.56606746 1.61194968]",
|
| 825 |
+
"[1.691997766494751, 1.2865687608718872, 1.5571787357330322, 1.622729778289795]"
|
| 826 |
+
],
|
| 827 |
+
[
|
| 828 |
+
"[0.90817457 0.89270043 0.38583666 0.66566533]",
|
| 829 |
+
"[1.90817451 1.89270043 1.3858366 1.66566539]",
|
| 830 |
+
"[1.9086859226226807, 1.924757719039917, 1.3887461423873901, 1.6714670658111572]"
|
| 831 |
+
]
|
| 832 |
+
]
|
| 833 |
+
},
|
| 834 |
+
"df_train": {
|
| 835 |
+
"columns": [
|
| 836 |
+
"x",
|
| 837 |
+
"y"
|
| 838 |
+
],
|
| 839 |
+
"data": [
|
| 840 |
+
[
|
| 841 |
+
"[0.85706753 0.61447072 0.41741937 0.85147089]",
|
| 842 |
+
"[1.85706758 1.61447072 1.41741943 1.85147095]"
|
| 843 |
+
],
|
| 844 |
+
[
|
| 845 |
+
"[0.11560339 0.57495481 0.76535827 0.0391947 ]",
|
| 846 |
+
"[1.11560345 1.57495475 1.76535821 1.0391947 ]"
|
| 847 |
+
],
|
| 848 |
+
[
|
| 849 |
+
"[0.19409031 0.68692201 0.60667384 0.57829887]",
|
| 850 |
+
"[1.19409037 1.68692207 1.60667384 1.57829881]"
|
| 851 |
+
],
|
| 852 |
+
[
|
| 853 |
+
"[0.76807946 0.98855817 0.08259124 0.01730657]",
|
| 854 |
+
"[1.76807952 1.98855817 1.0825913 1.01730657]"
|
| 855 |
+
],
|
| 856 |
+
[
|
| 857 |
+
"[0.67269951 0.10478973 0.5584439 0.83605725]",
|
| 858 |
+
"[1.67269945 1.10478973 1.5584439 1.83605719]"
|
| 859 |
+
],
|
| 860 |
+
[
|
| 861 |
+
"[0.18686318 0.49356437 0.51323432 0.75392658]",
|
| 862 |
+
"[1.18686318 1.49356437 1.51323438 1.75392652]"
|
| 863 |
+
],
|
| 864 |
+
[
|
| 865 |
+
"[0.18149549 0.30520517 0.30946714 0.16786289]",
|
| 866 |
+
"[1.18149543 1.30520511 1.30946708 1.16786289]"
|
| 867 |
+
],
|
| 868 |
+
[
|
| 869 |
+
"[4.27091718e-01 4.89909172e-01 6.92297399e-01 2.57611275e-04]",
|
| 870 |
+
"[1.42709172 1.48990917 1.69229746 1.00025761]"
|
| 871 |
+
],
|
| 872 |
+
[
|
| 873 |
+
"[0.32225502 0.16999388 0.05823922 0.9628762 ]",
|
| 874 |
+
"[1.32225502 1.16999388 1.05823922 1.9628762 ]"
|
| 875 |
+
],
|
| 876 |
+
[
|
| 877 |
+
"[0.50783676 0.04156506 0.21984279 0.8454656 ]",
|
| 878 |
+
"[1.50783682 1.04156506 1.21984279 1.84546566]"
|
| 879 |
+
],
|
| 880 |
+
[
|
| 881 |
+
"[0.98324287 0.99464184 0.14008355 0.47651017]",
|
| 882 |
+
"[1.98324287 1.99464178 1.14008355 1.47651017]"
|
| 883 |
+
],
|
| 884 |
+
[
|
| 885 |
+
"[0.11693293 0.49860179 0.55020827 0.88832849]",
|
| 886 |
+
"[1.11693287 1.49860179 1.55020833 1.88832855]"
|
| 887 |
+
],
|
| 888 |
+
[
|
| 889 |
+
"[0.48959708 0.48549271 0.32688856 0.356677 ]",
|
| 890 |
+
"[1.48959708 1.48549271 1.32688856 1.35667706]"
|
| 891 |
+
],
|
| 892 |
+
[
|
| 893 |
+
"[0.50272274 0.54912758 0.17663097 0.79070699]",
|
| 894 |
+
"[1.50272274 1.54912758 1.17663097 1.79070699]"
|
| 895 |
+
],
|
| 896 |
+
[
|
| 897 |
+
"[0.04508126 0.76880038 0.80721325 0.62542385]",
|
| 898 |
+
"[1.04508126 1.76880038 1.80721331 1.62542391]"
|
| 899 |
+
],
|
| 900 |
+
[
|
| 901 |
+
"[0.19908059 0.17570406 0.51475513 0.1893943 ]",
|
| 902 |
+
"[1.19908059 1.175704 1.51475513 1.18939424]"
|
| 903 |
+
],
|
| 904 |
+
[
|
| 905 |
+
"[0.40167677 0.25953674 0.9407078 0.76308483]",
|
| 906 |
+
"[1.40167677 1.25953674 1.9407078 1.76308489]"
|
| 907 |
+
],
|
| 908 |
+
[
|
| 909 |
+
"[0.2480728 0.21694398 0.63941365 0.57128876]",
|
| 910 |
+
"[1.24807286 1.21694398 1.6394136 1.57128882]"
|
| 911 |
+
],
|
| 912 |
+
[
|
| 913 |
+
"[0.24388778 0.07268471 0.68350857 0.73431659]",
|
| 914 |
+
"[1.24388778 1.07268476 1.68350863 1.73431659]"
|
| 915 |
+
],
|
| 916 |
+
[
|
| 917 |
+
"[0.62569475 0.9881897 0.83639616 0.9828859 ]",
|
| 918 |
+
"[1.62569475 1.9881897 1.83639622 1.98288584]"
|
| 919 |
+
],
|
| 920 |
+
[
|
| 921 |
+
"[0.56922203 0.98222166 0.76851749 0.28615737]",
|
| 922 |
+
"[1.56922197 1.9822216 1.76851749 1.28615737]"
|
| 923 |
+
],
|
| 924 |
+
[
|
| 925 |
+
"[0.88776821 0.51636773 0.30333066 0.32230979]",
|
| 926 |
+
"[1.88776827 1.51636767 1.30333066 1.32230973]"
|
| 927 |
+
],
|
| 928 |
+
[
|
| 929 |
+
"[0.48507756 0.80808765 0.77162558 0.47834778]",
|
| 930 |
+
"[1.48507762 1.80808759 1.77162552 1.47834778]"
|
| 931 |
+
],
|
| 932 |
+
[
|
| 933 |
+
"[0.68062544 0.98093534 0.14778823 0.53244978]",
|
| 934 |
+
"[1.68062544 1.98093534 1.14778829 1.53244972]"
|
| 935 |
+
],
|
| 936 |
+
[
|
| 937 |
+
"[0.31518555 0.49643308 0.11509258 0.95458382]",
|
| 938 |
+
"[1.31518555 1.49643302 1.11509252 1.95458388]"
|
| 939 |
+
],
|
| 940 |
+
[
|
| 941 |
+
"[0.79121011 0.54161114 0.69369799 0.1520769 ]",
|
| 942 |
+
"[1.79121017 1.54161119 1.69369793 1.15207696]"
|
| 943 |
+
],
|
| 944 |
+
[
|
| 945 |
+
"[0.79423058 0.07138705 0.061777 0.18766576]",
|
| 946 |
+
"[1.79423058 1.07138705 1.061777 1.1876657 ]"
|
| 947 |
+
],
|
| 948 |
+
[
|
| 949 |
+
"[0.23942459 0.90487361 0.69337189 0.65089428]",
|
| 950 |
+
"[1.23942459 1.90487361 1.69337189 1.65089428]"
|
| 951 |
+
],
|
| 952 |
+
[
|
| 953 |
+
"[0.94516498 0.08422136 0.5608117 0.07652664]",
|
| 954 |
+
"[1.94516492 1.08422136 1.56081176 1.07652664]"
|
| 955 |
+
],
|
| 956 |
+
[
|
| 957 |
+
"[0.26661873 0.45946234 0.13510543 0.81294441]",
|
| 958 |
+
"[1.26661873 1.4594624 1.13510537 1.81294441]"
|
| 959 |
+
],
|
| 960 |
+
[
|
| 961 |
+
"[0.30754459 0.77694583 0.09278506 0.38326019]",
|
| 962 |
+
"[1.30754459 1.77694583 1.09278512 1.38326025]"
|
| 963 |
+
],
|
| 964 |
+
[
|
| 965 |
+
"[0.27845025 0.32472342 0.82203609 0.77107543]",
|
| 966 |
+
"[1.27845025 1.32472348 1.82203603 1.77107549]"
|
| 967 |
+
],
|
| 968 |
+
[
|
| 969 |
+
"[0.4827103 0.10563457 0.98858833 0.82286644]",
|
| 970 |
+
"[1.48271036 1.10563457 1.98858833 1.82286644]"
|
| 971 |
+
],
|
| 972 |
+
[
|
| 973 |
+
"[0.98033333 0.97656083 0.38939917 0.81491041]",
|
| 974 |
+
"[1.98033333 1.97656083 1.38939917 1.81491041]"
|
| 975 |
+
],
|
| 976 |
+
[
|
| 977 |
+
"[0.94221359 0.57740951 0.98649532 0.40934443]",
|
| 978 |
+
"[1.94221354 1.57740951 1.98649526 1.40934443]"
|
| 979 |
+
],
|
| 980 |
+
[
|
| 981 |
+
"[0.00497234 0.39319336 0.57054168 0.75150961]",
|
| 982 |
+
"[1.00497234 1.39319336 1.57054162 1.75150967]"
|
| 983 |
+
],
|
| 984 |
+
[
|
| 985 |
+
"[0.44330525 0.09997386 0.89025736 0.90507984]",
|
| 986 |
+
"[1.44330525 1.09997392 1.89025736 1.90507984]"
|
| 987 |
+
],
|
| 988 |
+
[
|
| 989 |
+
"[0.72290605 0.96945059 0.68354797 0.15270454]",
|
| 990 |
+
"[1.72290611 1.96945059 1.68354797 1.15270448]"
|
| 991 |
+
],
|
| 992 |
+
[
|
| 993 |
+
"[0.75292218 0.81470108 0.49657214 0.56217098]",
|
| 994 |
+
"[1.75292218 1.81470108 1.49657214 1.56217098]"
|
| 995 |
+
],
|
| 996 |
+
[
|
| 997 |
+
"[0.33480108 0.59181517 0.76198453 0.98062384]",
|
| 998 |
+
"[1.33480108 1.59181523 1.76198459 1.98062384]"
|
| 999 |
+
],
|
| 1000 |
+
[
|
| 1001 |
+
"[0.52784437 0.54268694 0.12358981 0.72116476]",
|
| 1002 |
+
"[1.52784443 1.54268694 1.12358975 1.7211647 ]"
|
| 1003 |
+
],
|
| 1004 |
+
[
|
| 1005 |
+
"[0.73217702 0.65233225 0.44077861 0.33837909]",
|
| 1006 |
+
"[1.73217702 1.65233231 1.44077861 1.33837914]"
|
| 1007 |
+
],
|
| 1008 |
+
[
|
| 1009 |
+
"[0.34084332 0.73018837 0.54168713 0.91440833]",
|
| 1010 |
+
"[1.34084332 1.73018837 1.54168713 1.91440833]"
|
| 1011 |
+
],
|
| 1012 |
+
[
|
| 1013 |
+
"[0.60110539 0.3618983 0.32342511 0.98672163]",
|
| 1014 |
+
"[1.60110545 1.3618983 1.32342505 1.98672163]"
|
| 1015 |
+
],
|
| 1016 |
+
[
|
| 1017 |
+
"[0.77427191 0.21829212 0.12769502 0.74303615]",
|
| 1018 |
+
"[1.77427197 1.21829212 1.12769508 1.74303615]"
|
| 1019 |
+
],
|
| 1020 |
+
[
|
| 1021 |
+
"[0.08107251 0.2602725 0.18861133 0.44833237]",
|
| 1022 |
+
"[1.08107257 1.2602725 1.18861127 1.44833231]"
|
| 1023 |
+
],
|
| 1024 |
+
[
|
| 1025 |
+
"[0.93488538 0.73882395 0.37345302 0.0274905 ]",
|
| 1026 |
+
"[1.93488538 1.73882389 1.37345302 1.0274905 ]"
|
| 1027 |
+
],
|
| 1028 |
+
[
|
| 1029 |
+
"[0.30631393 0.48311198 0.87847513 0.67559886]",
|
| 1030 |
+
"[1.30631399 1.48311198 1.87847519 1.67559886]"
|
| 1031 |
+
],
|
| 1032 |
+
[
|
| 1033 |
+
"[0.85566247 0.83362883 0.48424995 0.25265992]",
|
| 1034 |
+
"[1.85566247 1.83362889 1.48424995 1.25265992]"
|
| 1035 |
+
],
|
| 1036 |
+
[
|
| 1037 |
+
"[0.95928186 0.84273899 0.71514636 0.38619852]",
|
| 1038 |
+
"[1.95928192 1.84273899 1.7151463 1.38619852]"
|
| 1039 |
+
],
|
| 1040 |
+
[
|
| 1041 |
+
"[0.32565445 0.90939188 0.07488042 0.13730896]",
|
| 1042 |
+
"[1.32565451 1.90939188 1.07488036 1.13730896]"
|
| 1043 |
+
],
|
| 1044 |
+
[
|
| 1045 |
+
"[0.9829582 0.59269661 0.40120947 0.95487177]",
|
| 1046 |
+
"[1.9829582 1.59269667 1.40120947 1.95487177]"
|
| 1047 |
+
],
|
| 1048 |
+
[
|
| 1049 |
+
"[0.79905868 0.89367443 0.75429088 0.3190186 ]",
|
| 1050 |
+
"[1.79905868 1.89367437 1.75429082 1.3190186 ]"
|
| 1051 |
+
],
|
| 1052 |
+
[
|
| 1053 |
+
"[0.54914117 0.03810108 0.87531954 0.73044223]",
|
| 1054 |
+
"[1.54914117 1.03810108 1.87531948 1.73044229]"
|
| 1055 |
+
],
|
| 1056 |
+
[
|
| 1057 |
+
"[0.67418337 0.79634351 0.23229051 0.71345252]",
|
| 1058 |
+
"[1.67418337 1.79634356 1.23229051 1.71345258]"
|
| 1059 |
+
],
|
| 1060 |
+
[
|
| 1061 |
+
"[0.87285906 0.48354989 0.39394957 0.59456545]",
|
| 1062 |
+
"[1.872859 1.48354983 1.39394951 1.59456539]"
|
| 1063 |
+
],
|
| 1064 |
+
[
|
| 1065 |
+
"[0.81788456 0.58174163 0.29376316 0.7971254 ]",
|
| 1066 |
+
"[1.81788456 1.58174157 1.29376316 1.79712534]"
|
| 1067 |
+
],
|
| 1068 |
+
[
|
| 1069 |
+
"[0.94559073 0.65736622 0.25761551 0.48553199]",
|
| 1070 |
+
"[1.94559073 1.65736628 1.25761557 1.48553205]"
|
| 1071 |
+
],
|
| 1072 |
+
[
|
| 1073 |
+
"[0.60075855 0.12234765 0.00614399 0.30560958]",
|
| 1074 |
+
"[1.60075855 1.12234759 1.00614405 1.30560958]"
|
| 1075 |
+
],
|
| 1076 |
+
[
|
| 1077 |
+
"[0.39147133 0.29854035 0.84663737 0.58175623]",
|
| 1078 |
+
"[1.39147139 1.29854035 1.84663737 1.58175623]"
|
| 1079 |
+
],
|
| 1080 |
+
[
|
| 1081 |
+
"[0.02162331 0.81861657 0.92468154 0.07808572]",
|
| 1082 |
+
"[1.02162337 1.81861663 1.92468154 1.07808566]"
|
| 1083 |
+
],
|
| 1084 |
+
[
|
| 1085 |
+
"[0.02235305 0.52774918 0.7331115 0.84358269]",
|
| 1086 |
+
"[1.02235305 1.52774918 1.7331115 1.84358263]"
|
| 1087 |
+
],
|
| 1088 |
+
[
|
| 1089 |
+
"[0.6080932 0.56563014 0.32107437 0.72599429]",
|
| 1090 |
+
"[1.60809326 1.5656302 1.32107437 1.72599435]"
|
| 1091 |
+
],
|
| 1092 |
+
[
|
| 1093 |
+
"[0.47963417 0.81818312 0.48720706 0.49339259]",
|
| 1094 |
+
"[1.47963417 1.81818318 1.48720706 1.49339259]"
|
| 1095 |
+
],
|
| 1096 |
+
[
|
| 1097 |
+
"[0.9630242 0.76359051 0.24853623 0.76881069]",
|
| 1098 |
+
"[1.96302414 1.76359057 1.24853623 1.76881075]"
|
| 1099 |
+
],
|
| 1100 |
+
[
|
| 1101 |
+
"[0.60609657 0.96257663 0.19292736 0.95702219]",
|
| 1102 |
+
"[1.60609651 1.96257663 1.19292736 1.95702219]"
|
| 1103 |
+
],
|
| 1104 |
+
[
|
| 1105 |
+
"[0.80654246 0.08253473 0.74478531 0.71257162]",
|
| 1106 |
+
"[1.8065424 1.08253479 1.74478531 1.71257162]"
|
| 1107 |
+
],
|
| 1108 |
+
[
|
| 1109 |
+
"[0.76933283 0.86241865 0.44114518 0.65644735]",
|
| 1110 |
+
"[1.76933289 1.86241865 1.44114518 1.65644741]"
|
| 1111 |
+
],
|
| 1112 |
+
[
|
| 1113 |
+
"[0.59492421 0.90274489 0.38069052 0.46101224]",
|
| 1114 |
+
"[1.59492421 1.90274489 1.38069057 1.46101224]"
|
| 1115 |
+
],
|
| 1116 |
+
[
|
| 1117 |
+
"[0.15064228 0.03198934 0.25754827 0.51484001]",
|
| 1118 |
+
"[1.15064228 1.03198934 1.25754833 1.51484001]"
|
| 1119 |
+
],
|
| 1120 |
+
[
|
| 1121 |
+
"[0.12024075 0.21342516 0.56858408 0.58644271]",
|
| 1122 |
+
"[1.12024069 1.21342516 1.56858408 1.58644271]"
|
| 1123 |
+
],
|
| 1124 |
+
[
|
| 1125 |
+
"[0.91730917 0.22574073 0.09591609 0.33056474]",
|
| 1126 |
+
"[1.91730917 1.22574067 1.09591603 1.33056474]"
|
| 1127 |
+
],
|
| 1128 |
+
[
|
| 1129 |
+
"[0.6032477 0.83361369 0.18538666 0.19108021]",
|
| 1130 |
+
"[1.60324764 1.83361363 1.18538666 1.19108021]"
|
| 1131 |
+
],
|
| 1132 |
+
[
|
| 1133 |
+
"[0.63235509 0.70352674 0.96188956 0.46240485]",
|
| 1134 |
+
"[1.63235509 1.70352674 1.96188951 1.46240485]"
|
| 1135 |
+
],
|
| 1136 |
+
[
|
| 1137 |
+
"[0.37959969 0.42820001 0.10690689 0.96353984]",
|
| 1138 |
+
"[1.37959969 1.42820001 1.10690689 1.96353984]"
|
| 1139 |
+
],
|
| 1140 |
+
[
|
| 1141 |
+
"[0.40234613 0.54987347 0.49542785 0.54153186]",
|
| 1142 |
+
"[1.40234613 1.54987347 1.49542785 1.5415318 ]"
|
| 1143 |
+
],
|
| 1144 |
+
[
|
| 1145 |
+
"[0.80893755 0.92237449 0.88346356 0.93164903]",
|
| 1146 |
+
"[1.80893755 1.92237449 1.88346362 1.93164897]"
|
| 1147 |
+
],
|
| 1148 |
+
[
|
| 1149 |
+
"[0.12858278 0.09930819 0.83222693 0.72485673]",
|
| 1150 |
+
"[1.12858272 1.09930825 1.83222699 1.72485673]"
|
| 1151 |
+
],
|
| 1152 |
+
[
|
| 1153 |
+
"[0.72470158 0.4940322 0.41027349 0.89364016]",
|
| 1154 |
+
"[1.72470164 1.49403214 1.41027355 1.89364016]"
|
| 1155 |
+
],
|
| 1156 |
+
[
|
| 1157 |
+
"[0.47856545 0.46267092 0.6376707 0.84747767]",
|
| 1158 |
+
"[1.47856545 1.46267092 1.63767076 1.84747767]"
|
| 1159 |
+
],
|
| 1160 |
+
[
|
| 1161 |
+
"[0.49584109 0.80599248 0.07096875 0.75872749]",
|
| 1162 |
+
"[1.49584103 1.80599248 1.07096875 1.75872755]"
|
| 1163 |
+
],
|
| 1164 |
+
[
|
| 1165 |
+
"[0.43500566 0.66041756 0.80293626 0.96224713]",
|
| 1166 |
+
"[1.43500566 1.66041756 1.80293632 1.96224713]"
|
| 1167 |
+
],
|
| 1168 |
+
[
|
| 1169 |
+
"[0.78397602 0.74223626 0.26603186 0.41664881]",
|
| 1170 |
+
"[1.78397608 1.74223626 1.26603186 1.41664886]"
|
| 1171 |
+
],
|
| 1172 |
+
[
|
| 1173 |
+
"[0.28942841 0.05601001 0.33039129 0.27781558]",
|
| 1174 |
+
"[1.28942847 1.05601001 1.33039129 1.27781558]"
|
| 1175 |
+
],
|
| 1176 |
+
[
|
| 1177 |
+
"[0.68094063 0.45189077 0.22661722 0.37354094]",
|
| 1178 |
+
"[1.68094063 1.45189071 1.22661722 1.37354088]"
|
| 1179 |
+
],
|
| 1180 |
+
[
|
| 1181 |
+
"[0.43681622 0.74680805 0.83598751 0.12414402]",
|
| 1182 |
+
"[1.43681622 1.74680805 1.83598757 1.12414408]"
|
| 1183 |
+
],
|
| 1184 |
+
[
|
| 1185 |
+
"[0.47870928 0.17129105 0.27300501 0.20634609]",
|
| 1186 |
+
"[1.47870922 1.17129111 1.27300501 1.20634604]"
|
| 1187 |
+
],
|
| 1188 |
+
[
|
| 1189 |
+
"[0.72795159 0.79317838 0.27832931 0.96576637]",
|
| 1190 |
+
"[1.72795153 1.79317832 1.27832937 1.96576643]"
|
| 1191 |
+
],
|
| 1192 |
+
[
|
| 1193 |
+
"[0.87608397 0.93200487 0.80169648 0.37758952]",
|
| 1194 |
+
"[1.87608397 1.93200493 1.80169654 1.37758946]"
|
| 1195 |
+
],
|
| 1196 |
+
[
|
| 1197 |
+
"[0.68891573 0.25576538 0.96339929 0.503833 ]",
|
| 1198 |
+
"[1.68891573 1.25576544 1.96339929 1.50383306]"
|
| 1199 |
+
]
|
| 1200 |
+
]
|
| 1201 |
+
}
|
| 1202 |
+
},
|
| 1203 |
+
"other": {
|
| 1204 |
+
"model": "ModelConfig(model=Sequential(\n (0) - Linear(in_features=4, out_features=4, bias=True): Input__embedding_1_x -> Linear_1_x\n (1) - <function leaky_relu at 0x710fc8f0fba0>: Linear_1_x -> Activation_2_x\n (2) - Identity(): Activation_2_x -> Activation_2_x\n), model_inputs=['Input__embedding_1_x'], model_outputs=['Activation_2_x'], loss_inputs=['Activation_2_x', 'Input__label_1_y'], loss=Sequential(\n (0) - <function mse_loss at 0x710fc8f316c0>: Activation_2_x, Input__label_1_y -> MSE_loss_1_loss\n (1) - Identity(): MSE_loss_1_loss -> loss\n), optimizer=SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n fused: None\n lr: 0.1\n maximize: False\n momentum: 0\n nesterov: False\n weight_decay: 0\n))"
|
| 1205 |
+
},
|
| 1206 |
+
"relations": []
|
| 1207 |
+
},
|
| 1208 |
+
"error": null,
|
| 1209 |
+
"meta": {
|
| 1210 |
+
"inputs": {
|
| 1211 |
+
"bundle": {
|
| 1212 |
+
"name": "bundle",
|
| 1213 |
+
"position": "left",
|
| 1214 |
+
"type": {
|
| 1215 |
+
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
|
| 1216 |
+
}
|
| 1217 |
+
}
|
| 1218 |
+
},
|
| 1219 |
+
"name": "View tables",
|
| 1220 |
+
"outputs": {},
|
| 1221 |
+
"params": {
|
| 1222 |
+
"limit": {
|
| 1223 |
+
"default": 100.0,
|
| 1224 |
+
"name": "limit",
|
| 1225 |
+
"type": {
|
| 1226 |
+
"type": "<class 'int'>"
|
| 1227 |
+
}
|
| 1228 |
+
}
|
| 1229 |
+
},
|
| 1230 |
+
"position": {
|
| 1231 |
+
"x": 471.0,
|
| 1232 |
+
"y": 424.0
|
| 1233 |
+
},
|
| 1234 |
+
"type": "table_view"
|
| 1235 |
+
},
|
| 1236 |
+
"params": {
|
| 1237 |
+
"limit": 100.0
|
| 1238 |
+
},
|
| 1239 |
+
"status": "planned",
|
| 1240 |
+
"title": "View tables"
|
| 1241 |
+
},
|
| 1242 |
+
"dragHandle": ".bg-primary",
|
| 1243 |
+
"height": 600.0,
|
| 1244 |
+
"id": "View tables 1",
|
| 1245 |
+
"position": {
|
| 1246 |
+
"x": 2017.4630208327735,
|
| 1247 |
+
"y": -223.54449620081252
|
| 1248 |
+
},
|
| 1249 |
+
"type": "table_view",
|
| 1250 |
+
"width": 582.0
|
| 1251 |
+
},
|
| 1252 |
+
{
|
| 1253 |
+
"data": {
|
| 1254 |
+
"__execution_delay": 0.0,
|
| 1255 |
+
"collapsed": null,
|
| 1256 |
+
"display": {
|
| 1257 |
+
"dataframes": {
|
| 1258 |
+
"df": {
|
| 1259 |
+
"columns": [
|
| 1260 |
+
"x",
|
| 1261 |
+
"y"
|
| 1262 |
+
]
|
| 1263 |
+
},
|
| 1264 |
+
"df_test": {
|
| 1265 |
+
"columns": [
|
| 1266 |
+
"x",
|
| 1267 |
+
"y"
|
| 1268 |
+
]
|
| 1269 |
+
},
|
| 1270 |
+
"df_train": {
|
| 1271 |
+
"columns": [
|
| 1272 |
+
"x",
|
| 1273 |
+
"y"
|
| 1274 |
+
]
|
| 1275 |
+
}
|
| 1276 |
+
},
|
| 1277 |
+
"other": {
|
| 1278 |
+
"model": {
|
| 1279 |
+
"model": {
|
| 1280 |
+
"inputs": [],
|
| 1281 |
+
"loss_inputs": [
|
| 1282 |
+
"Activation_2_x",
|
| 1283 |
+
"Input__label_1_y"
|
| 1284 |
+
],
|
| 1285 |
+
"outputs": [
|
| 1286 |
+
"Activation_2_x",
|
| 1287 |
+
"Input__label_1_y"
|
| 1288 |
+
]
|
| 1289 |
+
},
|
| 1290 |
+
"type": "model"
|
| 1291 |
+
}
|
| 1292 |
+
},
|
| 1293 |
+
"relations": []
|
| 1294 |
+
},
|
| 1295 |
+
"error": "Mapping is unset.",
|
| 1296 |
+
"meta": {
|
| 1297 |
+
"inputs": {
|
| 1298 |
+
"bundle": {
|
| 1299 |
+
"name": "bundle",
|
| 1300 |
+
"position": "left",
|
| 1301 |
+
"type": {
|
| 1302 |
+
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
|
| 1303 |
+
}
|
| 1304 |
+
}
|
| 1305 |
+
},
|
| 1306 |
+
"name": "Train model",
|
| 1307 |
+
"outputs": {
|
| 1308 |
+
"output": {
|
| 1309 |
+
"name": "output",
|
| 1310 |
+
"position": "right",
|
| 1311 |
+
"type": {
|
| 1312 |
+
"type": "None"
|
| 1313 |
+
}
|
| 1314 |
+
}
|
| 1315 |
+
},
|
| 1316 |
+
"params": {
|
| 1317 |
+
"epochs": {
|
| 1318 |
+
"default": 1.0,
|
| 1319 |
+
"name": "epochs",
|
| 1320 |
+
"type": {
|
| 1321 |
+
"type": "<class 'int'>"
|
| 1322 |
+
}
|
| 1323 |
+
},
|
| 1324 |
+
"input_mapping": {
|
| 1325 |
+
"default": null,
|
| 1326 |
+
"name": "input_mapping",
|
| 1327 |
+
"type": {
|
| 1328 |
+
"type": "<class 'lynxkite_graph_analytics.pytorch_model_ops.ModelMapping'>"
|
| 1329 |
+
}
|
| 1330 |
+
},
|
| 1331 |
+
"model_workspace": {
|
| 1332 |
+
"default": null,
|
| 1333 |
+
"name": "model_workspace",
|
| 1334 |
+
"type": {
|
| 1335 |
+
"type": "<class 'str'>"
|
| 1336 |
+
}
|
| 1337 |
+
},
|
| 1338 |
+
"save_as": {
|
| 1339 |
+
"default": "model",
|
| 1340 |
+
"name": "save_as",
|
| 1341 |
+
"type": {
|
| 1342 |
+
"type": "<class 'str'>"
|
| 1343 |
+
}
|
| 1344 |
+
}
|
| 1345 |
+
},
|
| 1346 |
+
"position": {
|
| 1347 |
+
"x": 723.0,
|
| 1348 |
+
"y": 370.0
|
| 1349 |
+
},
|
| 1350 |
+
"type": "basic"
|
| 1351 |
+
},
|
| 1352 |
+
"params": {
|
| 1353 |
+
"epochs": "2",
|
| 1354 |
+
"input_mapping": "{\"map\":{\"Activation_2_x\":{\"df\":\"df_train\"},\"Input__label_1_y\":{\"df\":\"df_train\",\"column\":\"y\"}}}",
|
| 1355 |
+
"model_workspace": "Model definition",
|
| 1356 |
+
"save_as": "model"
|
| 1357 |
+
},
|
| 1358 |
+
"status": "done",
|
| 1359 |
+
"title": "Train model"
|
| 1360 |
+
},
|
| 1361 |
+
"dragHandle": ".bg-primary",
|
| 1362 |
+
"height": 473.0,
|
| 1363 |
+
"id": "Train model 1",
|
| 1364 |
+
"position": {
|
| 1365 |
+
"x": 712.1212754578014,
|
| 1366 |
+
"y": 42.33722689912529
|
| 1367 |
+
},
|
| 1368 |
+
"type": "basic",
|
| 1369 |
+
"width": 577.0
|
| 1370 |
}
|
| 1371 |
]
|
| 1372 |
}
|
lynxkite-app/web/src/index.css
CHANGED
|
@@ -256,6 +256,14 @@ body {
|
|
| 256 |
cursor: pointer;
|
| 257 |
}
|
| 258 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
}
|
| 260 |
|
| 261 |
.params-expander {
|
|
|
|
| 256 |
cursor: pointer;
|
| 257 |
}
|
| 258 |
}
|
| 259 |
+
|
| 260 |
+
.model-mapping-param {
|
| 261 |
+
border: 1px solid var(--fallback-bc, oklch(var(--bc) / 0.2));
|
| 262 |
+
border-collapse: separate;
|
| 263 |
+
border-radius: 5px;
|
| 264 |
+
padding: 5px 10px;
|
| 265 |
+
width: 100%;
|
| 266 |
+
}
|
| 267 |
}
|
| 268 |
|
| 269 |
.params-expander {
|
lynxkite-app/web/src/workspace/nodes/NodeParameter.tsx
CHANGED
|
@@ -1,15 +1,127 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
|
|
|
|
|
|
|
|
|
|
| 3 |
function ParamName({ name }: { name: string }) {
|
| 4 |
return (
|
| 5 |
<span className="param-name bg-base-200">{name.replace(/_/g, " ")}</span>
|
| 6 |
);
|
| 7 |
}
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
interface NodeParameterProps {
|
| 10 |
name: string;
|
| 11 |
value: any;
|
| 12 |
meta: any;
|
|
|
|
| 13 |
onChange: (value: any, options?: { delay: number }) => void;
|
| 14 |
}
|
| 15 |
|
|
@@ -17,6 +129,7 @@ export default function NodeParameter({
|
|
| 17 |
name,
|
| 18 |
value,
|
| 19 |
meta,
|
|
|
|
| 20 |
onChange,
|
| 21 |
}: NodeParameterProps) {
|
| 22 |
return (
|
|
@@ -65,6 +178,11 @@ export default function NodeParameter({
|
|
| 65 |
{name.replace(/_/g, " ")}
|
| 66 |
</label>
|
| 67 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
) : (
|
| 69 |
<>
|
| 70 |
<ParamName name={name} />
|
|
|
|
| 1 |
+
// @ts-ignore
|
| 2 |
+
import ArrowsHorizontal from "~icons/tabler/arrows-horizontal.jsx";
|
| 3 |
|
| 4 |
+
const BOOLEAN = "<class 'bool'>";
|
| 5 |
+
const MODEL_MAPPING =
|
| 6 |
+
"<class 'lynxkite_graph_analytics.pytorch_model_ops.ModelMapping'>";
|
| 7 |
function ParamName({ name }: { name: string }) {
|
| 8 |
return (
|
| 9 |
<span className="param-name bg-base-200">{name.replace(/_/g, " ")}</span>
|
| 10 |
);
|
| 11 |
}
|
| 12 |
|
| 13 |
+
function getModelBindings(data: any): string[] {
|
| 14 |
+
function bindingsOfModel(m: any): string[] {
|
| 15 |
+
return [...m.inputs, ...m.outputs, ...m.loss_inputs];
|
| 16 |
+
}
|
| 17 |
+
const bindings = new Set<string>();
|
| 18 |
+
const other = data?.display?.other ?? data?.display?.value?.other ?? {};
|
| 19 |
+
for (const e of Object.values(other) as any[]) {
|
| 20 |
+
if (e.type === "model") {
|
| 21 |
+
for (const b of bindingsOfModel(e.model)) {
|
| 22 |
+
bindings.add(b);
|
| 23 |
+
}
|
| 24 |
+
}
|
| 25 |
+
}
|
| 26 |
+
const list = [...bindings];
|
| 27 |
+
list.sort();
|
| 28 |
+
return list;
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
function parseJsonOrEmpty(json: string): object {
|
| 32 |
+
try {
|
| 33 |
+
const j = JSON.parse(json);
|
| 34 |
+
if (typeof j === "object") {
|
| 35 |
+
return j;
|
| 36 |
+
}
|
| 37 |
+
} catch (e) {}
|
| 38 |
+
return {};
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
function ModelMapping({ value, onChange, data }: any) {
|
| 42 |
+
const v: any = parseJsonOrEmpty(value);
|
| 43 |
+
v.map ??= {};
|
| 44 |
+
const dfs =
|
| 45 |
+
data?.display?.dataframes ?? data?.display?.value?.dataframes ?? {};
|
| 46 |
+
const bindings = getModelBindings(data);
|
| 47 |
+
return (
|
| 48 |
+
<table className="model-mapping-param">
|
| 49 |
+
<tbody>
|
| 50 |
+
<tr>
|
| 51 |
+
<td>mm</td>
|
| 52 |
+
</tr>
|
| 53 |
+
{bindings.length > 0 ? (
|
| 54 |
+
bindings.map((binding: string) => (
|
| 55 |
+
<tr key={binding}>
|
| 56 |
+
<td>{binding}</td>
|
| 57 |
+
<td>
|
| 58 |
+
<ArrowsHorizontal />
|
| 59 |
+
</td>
|
| 60 |
+
<td>
|
| 61 |
+
<select
|
| 62 |
+
className="select select-ghost"
|
| 63 |
+
value={v.map?.[binding]?.df}
|
| 64 |
+
onChange={(evt) => {
|
| 65 |
+
const df = evt.currentTarget.value;
|
| 66 |
+
if (df === "unbound") {
|
| 67 |
+
const map = { ...v.map, [binding]: undefined };
|
| 68 |
+
onChange(JSON.stringify({ map }));
|
| 69 |
+
} else {
|
| 70 |
+
const columnSpec = {
|
| 71 |
+
column: dfs[df][0],
|
| 72 |
+
...(v.map?.[binding] || {}),
|
| 73 |
+
df,
|
| 74 |
+
};
|
| 75 |
+
const map = { ...v.map, [binding]: columnSpec };
|
| 76 |
+
onChange(JSON.stringify({ map }));
|
| 77 |
+
}
|
| 78 |
+
}}
|
| 79 |
+
>
|
| 80 |
+
<option key="unbound" value="unbound">
|
| 81 |
+
unbound
|
| 82 |
+
</option>
|
| 83 |
+
{Object.keys(dfs).map((df: string) => (
|
| 84 |
+
<option key={df} value={df}>
|
| 85 |
+
{df}
|
| 86 |
+
</option>
|
| 87 |
+
))}
|
| 88 |
+
</select>
|
| 89 |
+
</td>
|
| 90 |
+
<td>
|
| 91 |
+
<select
|
| 92 |
+
className="select select-ghost"
|
| 93 |
+
value={v.map?.[binding]?.column}
|
| 94 |
+
onChange={(evt) => {
|
| 95 |
+
const column = evt.currentTarget.value;
|
| 96 |
+
const columnSpec = { ...(v.map?.[binding] || {}), column };
|
| 97 |
+
const map = { ...v.map, [binding]: columnSpec };
|
| 98 |
+
onChange(JSON.stringify({ map }));
|
| 99 |
+
}}
|
| 100 |
+
>
|
| 101 |
+
{dfs[v.map?.[binding]?.df]?.columns.map((col: string) => (
|
| 102 |
+
<option key={col} value={col}>
|
| 103 |
+
{col}
|
| 104 |
+
</option>
|
| 105 |
+
))}
|
| 106 |
+
</select>
|
| 107 |
+
</td>
|
| 108 |
+
</tr>
|
| 109 |
+
))
|
| 110 |
+
) : (
|
| 111 |
+
<tr>
|
| 112 |
+
<td>no bindings</td>
|
| 113 |
+
</tr>
|
| 114 |
+
)}
|
| 115 |
+
</tbody>
|
| 116 |
+
</table>
|
| 117 |
+
);
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
interface NodeParameterProps {
|
| 121 |
name: string;
|
| 122 |
value: any;
|
| 123 |
meta: any;
|
| 124 |
+
data: any;
|
| 125 |
onChange: (value: any, options?: { delay: number }) => void;
|
| 126 |
}
|
| 127 |
|
|
|
|
| 129 |
name,
|
| 130 |
value,
|
| 131 |
meta,
|
| 132 |
+
data,
|
| 133 |
onChange,
|
| 134 |
}: NodeParameterProps) {
|
| 135 |
return (
|
|
|
|
| 178 |
{name.replace(/_/g, " ")}
|
| 179 |
</label>
|
| 180 |
</div>
|
| 181 |
+
) : meta?.type?.type === MODEL_MAPPING ? (
|
| 182 |
+
<>
|
| 183 |
+
<ParamName name={name} />
|
| 184 |
+
<ModelMapping value={value} data={data} onChange={onChange} />
|
| 185 |
+
</>
|
| 186 |
) : (
|
| 187 |
<>
|
| 188 |
<ParamName name={name} />
|
lynxkite-app/web/src/workspace/nodes/NodeWithParams.tsx
CHANGED
|
@@ -62,6 +62,7 @@ function NodeWithParams(props: any) {
|
|
| 62 |
name={name}
|
| 63 |
key={name}
|
| 64 |
value={value}
|
|
|
|
| 65 |
meta={metaParams?.[name]}
|
| 66 |
onChange={(value: any, opts?: UpdateOptions) =>
|
| 67 |
setParam(name, value, opts || {})
|
|
|
|
| 62 |
name={name}
|
| 63 |
key={name}
|
| 64 |
value={value}
|
| 65 |
+
data={props.data}
|
| 66 |
meta={metaParams?.[name]}
|
| 67 |
onChange={(value: any, opts?: UpdateOptions) =>
|
| 68 |
setParam(name, value, opts || {})
|
lynxkite-core/src/lynxkite/core/ops.py
CHANGED
|
@@ -112,6 +112,13 @@ class Result:
|
|
| 112 |
display: ReadOnlyJSON | None = None
|
| 113 |
error: str | None = None
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
MULTI_INPUT = Input(name="multi", type="*")
|
| 117 |
|
|
@@ -140,6 +147,11 @@ def _param_to_type(name, value, type):
|
|
| 140 |
return None if value == "" else _param_to_type(name, value, type)
|
| 141 |
case (type, types.NoneType):
|
| 142 |
return None if value == "" else _param_to_type(name, value, type)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
return value
|
| 144 |
|
| 145 |
|
|
@@ -174,9 +186,10 @@ class Op(BaseConfig):
|
|
| 174 |
"""Returns the parameters converted to the expected type."""
|
| 175 |
res = {}
|
| 176 |
for p in params:
|
| 177 |
-
res[p] = params[p]
|
| 178 |
if p in self.params:
|
| 179 |
res[p] = _param_to_type(p, params[p], self.params[p].type)
|
|
|
|
|
|
|
| 180 |
return res
|
| 181 |
|
| 182 |
|
|
|
|
| 112 |
display: ReadOnlyJSON | None = None
|
| 113 |
error: str | None = None
|
| 114 |
|
| 115 |
+
def default_display(self) -> ReadOnlyJSON | None:
|
| 116 |
+
"""Automatically extracts basic data from the output."""
|
| 117 |
+
if hasattr(self.output, "default_display"):
|
| 118 |
+
return self.output.default_display()
|
| 119 |
+
else:
|
| 120 |
+
return None
|
| 121 |
+
|
| 122 |
|
| 123 |
MULTI_INPUT = Input(name="multi", type="*")
|
| 124 |
|
|
|
|
| 147 |
return None if value == "" else _param_to_type(name, value, type)
|
| 148 |
case (type, types.NoneType):
|
| 149 |
return None if value == "" else _param_to_type(name, value, type)
|
| 150 |
+
if issubclass(type, pydantic.BaseModel):
|
| 151 |
+
try:
|
| 152 |
+
return type.model_validate_json(value)
|
| 153 |
+
except pydantic.ValidationError:
|
| 154 |
+
return None
|
| 155 |
return value
|
| 156 |
|
| 157 |
|
|
|
|
| 186 |
"""Returns the parameters converted to the expected type."""
|
| 187 |
res = {}
|
| 188 |
for p in params:
|
|
|
|
| 189 |
if p in self.params:
|
| 190 |
res[p] = _param_to_type(p, params[p], self.params[p].type)
|
| 191 |
+
else:
|
| 192 |
+
res[p] = params[p]
|
| 193 |
return res
|
| 194 |
|
| 195 |
|
lynxkite-core/src/lynxkite/core/workspace.py
CHANGED
|
@@ -58,13 +58,13 @@ class WorkspaceNode(BaseConfig):
|
|
| 58 |
|
| 59 |
def publish_result(self, result: ops.Result):
|
| 60 |
"""Sends the result to the frontend. Call this in an executor when the result is available."""
|
| 61 |
-
self.data.display = result.display
|
| 62 |
self.data.error = result.error
|
| 63 |
self.data.status = NodeStatus.done
|
| 64 |
if hasattr(self, "_crdt"):
|
| 65 |
with self._crdt.doc.transaction():
|
| 66 |
-
self._crdt["data"]["display"] =
|
| 67 |
-
self._crdt["data"]["error"] =
|
| 68 |
self._crdt["data"]["status"] = NodeStatus.done
|
| 69 |
|
| 70 |
def publish_error(self, error: Exception | str | None):
|
|
|
|
| 58 |
|
| 59 |
def publish_result(self, result: ops.Result):
|
| 60 |
"""Sends the result to the frontend. Call this in an executor when the result is available."""
|
| 61 |
+
self.data.display = result.display or result.default_display()
|
| 62 |
self.data.error = result.error
|
| 63 |
self.data.status = NodeStatus.done
|
| 64 |
if hasattr(self, "_crdt"):
|
| 65 |
with self._crdt.doc.transaction():
|
| 66 |
+
self._crdt["data"]["display"] = self.data.display
|
| 67 |
+
self._crdt["data"]["error"] = self.data.error
|
| 68 |
self._crdt["data"]["status"] = NodeStatus.done
|
| 69 |
|
| 70 |
def publish_error(self, error: Exception | str | None):
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/core.py
CHANGED
|
@@ -106,6 +106,7 @@ class Bundle:
|
|
| 106 |
)
|
| 107 |
|
| 108 |
def to_dict(self, limit: int = 100):
|
|
|
|
| 109 |
return {
|
| 110 |
"dataframes": {
|
| 111 |
name: {
|
|
@@ -115,7 +116,23 @@ class Bundle:
|
|
| 115 |
for name, df in self.dfs.items()
|
| 116 |
},
|
| 117 |
"relations": [dataclasses.asdict(relation) for relation in self.relations],
|
| 118 |
-
"other": self.other,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
}
|
| 120 |
|
| 121 |
|
|
|
|
| 106 |
)
|
| 107 |
|
| 108 |
def to_dict(self, limit: int = 100):
|
| 109 |
+
"""JSON-serializable representation of the bundle, including some data."""
|
| 110 |
return {
|
| 111 |
"dataframes": {
|
| 112 |
name: {
|
|
|
|
| 116 |
for name, df in self.dfs.items()
|
| 117 |
},
|
| 118 |
"relations": [dataclasses.asdict(relation) for relation in self.relations],
|
| 119 |
+
"other": {k: str(v) for k, v in self.other.items()},
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
def default_display(self):
|
| 123 |
+
"""JSON-serializable information about the bundle, metadata only."""
|
| 124 |
+
return {
|
| 125 |
+
"dataframes": {
|
| 126 |
+
name: {
|
| 127 |
+
"columns": sorted(str(c) for c in df.columns),
|
| 128 |
+
}
|
| 129 |
+
for name, df in self.dfs.items()
|
| 130 |
+
},
|
| 131 |
+
"relations": [dataclasses.asdict(relation) for relation in self.relations],
|
| 132 |
+
"other": {
|
| 133 |
+
k: getattr(v, "default_display", lambda: {})()
|
| 134 |
+
for k, v in self.other.items()
|
| 135 |
+
},
|
| 136 |
}
|
| 137 |
|
| 138 |
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/lynxkite_ops.py
CHANGED
|
@@ -368,21 +368,26 @@ def train_model(
|
|
| 368 |
bundle: core.Bundle,
|
| 369 |
*,
|
| 370 |
model_workspace: str,
|
| 371 |
-
input_mapping:
|
| 372 |
epochs: int = 1,
|
| 373 |
save_as: str = "model",
|
| 374 |
):
|
| 375 |
"""Trains the selected model on the selected dataset. Most training parameters are set in the model definition."""
|
|
|
|
|
|
|
| 376 |
ws = load_ws(model_workspace)
|
| 377 |
-
|
| 378 |
-
|
|
|
|
| 379 |
m = pytorch_model_ops.build_model(ws, inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
t = tqdm(range(epochs), desc="Training model")
|
| 381 |
for _ in t:
|
| 382 |
loss = m.train(inputs)
|
| 383 |
t.set_postfix({"loss": loss})
|
| 384 |
-
bundle = bundle.copy()
|
| 385 |
-
bundle.other[save_as] = m
|
| 386 |
return bundle
|
| 387 |
|
| 388 |
|
|
@@ -391,18 +396,18 @@ def model_inference(
|
|
| 391 |
bundle: core.Bundle,
|
| 392 |
*,
|
| 393 |
model_name: str = "model",
|
| 394 |
-
input_mapping:
|
| 395 |
-
output_mapping:
|
| 396 |
):
|
| 397 |
"""Executes a trained model."""
|
|
|
|
|
|
|
| 398 |
m = bundle.other[model_name]
|
| 399 |
-
input_mapping = json.loads(input_mapping)
|
| 400 |
-
output_mapping = json.loads(output_mapping)
|
| 401 |
inputs = pytorch_model_ops.to_tensors(bundle, input_mapping)
|
| 402 |
outputs = m.inference(inputs)
|
| 403 |
bundle = bundle.copy()
|
| 404 |
-
for k, v in output_mapping.items():
|
| 405 |
-
bundle.dfs[v
|
| 406 |
return bundle
|
| 407 |
|
| 408 |
|
|
|
|
| 368 |
bundle: core.Bundle,
|
| 369 |
*,
|
| 370 |
model_workspace: str,
|
| 371 |
+
input_mapping: pytorch_model_ops.ModelMapping,
|
| 372 |
epochs: int = 1,
|
| 373 |
save_as: str = "model",
|
| 374 |
):
|
| 375 |
"""Trains the selected model on the selected dataset. Most training parameters are set in the model definition."""
|
| 376 |
+
assert model_workspace, "Model workspace is unset."
|
| 377 |
+
print(f"input_mapping: {input_mapping}")
|
| 378 |
ws = load_ws(model_workspace)
|
| 379 |
+
inputs = (
|
| 380 |
+
pytorch_model_ops.to_tensors(bundle, input_mapping) if input_mapping else {}
|
| 381 |
+
)
|
| 382 |
m = pytorch_model_ops.build_model(ws, inputs)
|
| 383 |
+
bundle = bundle.copy()
|
| 384 |
+
bundle.other[save_as] = m
|
| 385 |
+
if input_mapping is None:
|
| 386 |
+
return ops.Result(bundle, error="Mapping is unset.")
|
| 387 |
t = tqdm(range(epochs), desc="Training model")
|
| 388 |
for _ in t:
|
| 389 |
loss = m.train(inputs)
|
| 390 |
t.set_postfix({"loss": loss})
|
|
|
|
|
|
|
| 391 |
return bundle
|
| 392 |
|
| 393 |
|
|
|
|
| 396 |
bundle: core.Bundle,
|
| 397 |
*,
|
| 398 |
model_name: str = "model",
|
| 399 |
+
input_mapping: pytorch_model_ops.ModelMapping,
|
| 400 |
+
output_mapping: pytorch_model_ops.ModelMapping,
|
| 401 |
):
|
| 402 |
"""Executes a trained model."""
|
| 403 |
+
if input_mapping is None or output_mapping is None:
|
| 404 |
+
return ops.Result(bundle, error="Mapping is unset.")
|
| 405 |
m = bundle.other[model_name]
|
|
|
|
|
|
|
| 406 |
inputs = pytorch_model_ops.to_tensors(bundle, input_mapping)
|
| 407 |
outputs = m.inference(inputs)
|
| 408 |
bundle = bundle.copy()
|
| 409 |
+
for k, v in output_mapping.map.items():
|
| 410 |
+
bundle.dfs[v.df][v.column] = outputs[k].detach().numpy().tolist()
|
| 411 |
return bundle
|
| 412 |
|
| 413 |
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/pytorch_model_ops.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
"""Boxes for defining PyTorch models."""
|
| 2 |
|
| 3 |
import graphlib
|
|
|
|
|
|
|
| 4 |
from lynxkite.core import ops, workspace
|
| 5 |
from lynxkite.core.ops import Parameter as P
|
| 6 |
import torch
|
|
@@ -128,6 +130,15 @@ def _to_id(s: str) -> str:
|
|
| 128 |
return "".join(c if c.isalnum() else "_" for c in s)
|
| 129 |
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
@dataclass
|
| 132 |
class ModelConfig:
|
| 133 |
model: torch.nn.Module
|
|
@@ -169,6 +180,16 @@ class ModelConfig:
|
|
| 169 |
c.model = self.model.copy()
|
| 170 |
return c
|
| 171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
def build_model(
|
| 174 |
ws: workspace.Workspace, inputs: dict[str, torch.Tensor]
|
|
@@ -241,9 +262,9 @@ def build_model(
|
|
| 241 |
loss_layers.append(
|
| 242 |
(torch.nn.functional.mse_loss, f"{xi}, {yi} -> {nid}_loss")
|
| 243 |
)
|
| 244 |
-
cfg["model_inputs"] = used_inputs & inputs.keys()
|
| 245 |
-
cfg["model_outputs"] = loss_inputs - inputs.keys()
|
| 246 |
-
cfg["loss_inputs"] = loss_inputs
|
| 247 |
# Make sure the trained output is output from the last model layer.
|
| 248 |
outputs = ", ".join(cfg["model_outputs"])
|
| 249 |
layers.append((torch.nn.Identity(), f"{outputs} -> {outputs}"))
|
|
@@ -266,11 +287,9 @@ def build_model(
|
|
| 266 |
return ModelConfig(**cfg)
|
| 267 |
|
| 268 |
|
| 269 |
-
def to_tensors(b: core.Bundle, m:
|
| 270 |
"""Converts a tensor to the correct type for PyTorch."""
|
| 271 |
tensors = {}
|
| 272 |
-
for k, v in m.items():
|
| 273 |
-
tensors[k] = torch.tensor(
|
| 274 |
-
b.dfs[v["df"]][v["column"]].to_list(), dtype=torch.float32
|
| 275 |
-
)
|
| 276 |
return tensors
|
|
|
|
| 1 |
"""Boxes for defining PyTorch models."""
|
| 2 |
|
| 3 |
import graphlib
|
| 4 |
+
|
| 5 |
+
import pydantic
|
| 6 |
from lynxkite.core import ops, workspace
|
| 7 |
from lynxkite.core.ops import Parameter as P
|
| 8 |
import torch
|
|
|
|
| 130 |
return "".join(c if c.isalnum() else "_" for c in s)
|
| 131 |
|
| 132 |
|
| 133 |
+
class ColumnSpec(pydantic.BaseModel):
|
| 134 |
+
df: str
|
| 135 |
+
column: str
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class ModelMapping(pydantic.BaseModel):
|
| 139 |
+
map: dict[str, ColumnSpec]
|
| 140 |
+
|
| 141 |
+
|
| 142 |
@dataclass
|
| 143 |
class ModelConfig:
|
| 144 |
model: torch.nn.Module
|
|
|
|
| 180 |
c.model = self.model.copy()
|
| 181 |
return c
|
| 182 |
|
| 183 |
+
def default_display(self):
|
| 184 |
+
return {
|
| 185 |
+
"type": "model",
|
| 186 |
+
"model": {
|
| 187 |
+
"inputs": self.model_inputs,
|
| 188 |
+
"outputs": self.model_outputs,
|
| 189 |
+
"loss_inputs": self.loss_inputs,
|
| 190 |
+
},
|
| 191 |
+
}
|
| 192 |
+
|
| 193 |
|
| 194 |
def build_model(
|
| 195 |
ws: workspace.Workspace, inputs: dict[str, torch.Tensor]
|
|
|
|
| 262 |
loss_layers.append(
|
| 263 |
(torch.nn.functional.mse_loss, f"{xi}, {yi} -> {nid}_loss")
|
| 264 |
)
|
| 265 |
+
cfg["model_inputs"] = list(used_inputs & inputs.keys())
|
| 266 |
+
cfg["model_outputs"] = list(loss_inputs - inputs.keys())
|
| 267 |
+
cfg["loss_inputs"] = list(loss_inputs)
|
| 268 |
# Make sure the trained output is output from the last model layer.
|
| 269 |
outputs = ", ".join(cfg["model_outputs"])
|
| 270 |
layers.append((torch.nn.Identity(), f"{outputs} -> {outputs}"))
|
|
|
|
| 287 |
return ModelConfig(**cfg)
|
| 288 |
|
| 289 |
|
| 290 |
+
def to_tensors(b: core.Bundle, m: ModelMapping) -> dict[str, torch.Tensor]:
|
| 291 |
"""Converts a tensor to the correct type for PyTorch."""
|
| 292 |
tensors = {}
|
| 293 |
+
for k, v in m.map.items():
|
| 294 |
+
tensors[k] = torch.tensor(b.dfs[v.df][v.column].to_list(), dtype=torch.float32)
|
|
|
|
|
|
|
| 295 |
return tensors
|